Due date: 23.11.2021

We will discuss the content of Exercise sheet 4 as well.

Exercise 18. Consider non-constant polynomials $f, g \in I[x]$ over an integral domain *I* such that $m = \deg(f)$ and $n = \deg(g)$. Prove the subsequent resultant properties:

- (a) $\operatorname{res}_{x}(f,g) = (-1)^{mn} \operatorname{res}_{x}(g,f).$
- (b) If $\lambda, \mu \in I^*$, then $\operatorname{res}_x(\lambda f, \mu g) = \lambda^n \mu^m \operatorname{res}_x(f, g)$.
- (c) Let $p = x^5 3x^4 2x^3 + 3x^2 + 7x + 6$ and $q = x^4 + x^2 + 1$. Construct the Sylvester matrix Syl_x(*p*, *q*) and compute the resultant res_x(*p*, *q*). What does the resultant tell you about common factors of *p* and *q* in $\mathbb{Q}[x]$?

Exercise 19. Let $f, g \in K[x]$ be non-constant polynomials over a field *K*. Perform division with remainder of *f* by *g*, i.e. f = qg + r, where $q, r \in K[x]$ and r = 0 or deg(r) < deg(g). Show that if *r* is non-constant, then

$$\operatorname{res}_{x}(f,g) = (-1)^{mn} \operatorname{lc}(g)^{m-o} \operatorname{res}_{x}(g,r),$$

where $m = \deg(f)$, $n = \deg(g)$, and $o = \deg(r)$.