Due date: 23.11.2021

We will discuss the content of Exercise sheet 4 as well.
Exercise 18. Consider non-constant polynomials $f, g \in I[x]$ over an integral domain I such that $m=\operatorname{deg}(f)$ and $n=\operatorname{deg}(g)$. Prove the subsequent resultant properties:
(a) $\operatorname{res}_{x}(f, g)=(-1)^{m n} \operatorname{res}_{x}(g, f)$.
(b) If $\lambda, \mu \in I^{*}$, then $\operatorname{res}_{x}(\lambda f, \mu g)=\lambda^{n} \mu^{m} \operatorname{res}_{x}(f, g)$.
(c) Let $p=x^{5}-3 x^{4}-2 x^{3}+3 x^{2}+7 x+6$ and $q=x^{4}+x^{2}+1$. Construct the Sylvester matrix $\operatorname{Syl}_{x}(p, q)$ and compute the resultant $\operatorname{res}_{x}(p, q)$. What does the resultant tell you about common factors of p and q in $\mathbb{Q}[x]$?

Exercise 19. Let $f, g \in K[x]$ be non-constant polynomials over a field K. Perform division with remainder of f by g, i.e. $f=q g+r$, where $q, r \in K[x]$ and $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$. Show that if r is non-constant, then

$$
\operatorname{res}_{x}(f, g)=(-1)^{m n} \operatorname{lc}(g)^{m-o} \operatorname{res}_{x}(g, r)
$$

where $m=\operatorname{deg}(f), n=\operatorname{deg}(g)$, and $o=\operatorname{deg}(r)$.

