Due date: 16.11.2021

Exercise 15. Take your favourite CAS and implement the algorithm SQFR_FACTOR from the lecture notes. Use your implementation to compute the square-free factors of the polynomial

$$
f=x^{9}+7 x^{8}+17 x^{7}+12 x^{6}-17 x^{5}-37 x^{4}-21 x^{3}+10 x^{2}+20 x+8
$$

What is the difference between the square-free factors and the irreducible factors (in $\mathbb{Z}[x]$) of the polynomial f ?

Exercise 16. In this exercise, we will give an answer to a special case of the following famous (resolved) problem in algebraic geometry.

Problem (Nullstellensatz). Let $S \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be a set of polynomials over an algebraically closed field K. What is the relation between the ideals $\langle S\rangle$ and $\mathbf{I}(\mathbf{Z}(S))$?

The notation $\mathbf{Z}(\cdot)$ and $\mathbf{I}(\cdot)$ stand for the subsequent constructions. Let $S \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathbf{Z}(S):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in K^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in S\right\}
$$

i.e. the set of all common roots of the polynomials in S. A set which is defined by the zero-locus of a collection of polynomials is called an (affine) algebraic set. For $A \subseteq K^{n}$, let

$$
\mathbf{I}(A):=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in A\right\}
$$

be the ideal of all polynomials which vanish on all points in A.
Consider the case where the polynomial ring is the principal ideal domain $\mathbb{C}[x]$. Recall that every complex polynomial $f \in \mathbb{C}[x]$ factors completely into linear polynomials, i.e.

$$
\begin{equation*}
f=c\left(x-r_{1}\right)^{e_{1}} \cdots\left(x-r_{k}\right)^{e_{k}}, \tag{1}
\end{equation*}
$$

where $r_{1}, \ldots, r_{k} \in \mathbb{C}$ are the distinct roots of f, the exponents e_{i} are positive integers denoting the multiplicities of the roots, and $c \in \mathbb{C}$.

Let $f \in \mathbb{C}[x]$ be a non-zero polynomial with a factorization as in Equation (1).
(a) Show that $\left\langle f_{\mathrm{sfp}}\right\rangle=\mathbf{I}(\mathbf{Z}(\{f\}))$, where $f_{\text {sfp }}=c\left(x-r_{1}\right) \cdots\left(x-r_{k}\right)$ is called the square-free part of f.
(b) Show that the square-free part of the polynomial f can be computed efficiently by ${ }^{1}$

$$
f_{\mathrm{sfp}}=\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)} .
$$

(c) Find a single generator of the ideal $\mathbf{I}(\mathbf{Z}(\{f, g\})) \subseteq \mathbb{C}[x]$, where

$$
f=x^{6}-x^{5}-2 x^{4}+2 x^{3}+x^{2}-x \quad \text { and } \quad g=x^{5}+x^{4}-2 x^{3}-2 x^{2}+x+1
$$

[^0]Exercise 17. Prove Theorem 2.3.3 from the lecture notes: Let K be a field of characteristic zero and $f \in K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero polynomial. Then f is square-free if and only if

$$
\operatorname{gcd}\left(f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=1
$$

[^0]: ${ }^{1} f^{\prime}$ denotes the derivative of f.

