Due date: 9.11.2021

Exercise 10. Let *I* be an integral domain and consider polynomials $a, b \in I[x]$ such that $b \neq 0$ and $m := \deg(a) \ge \deg(b) =: n$. Show that there are uniquely defined polynomials $q, r \in I[x]$ such that $\operatorname{lc}(b)^{m-n+1}a = qb + r$ and either r = 0 or $\deg(r) < \deg(b)$.

Exercise 11. If *R* is a commutative ring (with unit), show that the polynomial ring R[x] is a principal ideal domain if and only if *R* is a field. What conditions must *R* satisfy such that R[x] is an Euclidean domain?

Exercise 12. Which of the following domains (with the usual addition and multiplication) are Euclidean domains and which are not? Justify your answer.

- (a) \mathbb{Z} together with the degree function deg(*i*) = |i|, $i \in \mathbb{Z}^*$.
- (b) \mathbb{Q} together with the degree function deg $(q) = |q|, q \in \mathbb{Q}^*$.
- (c) $\mathbb{Z}[i] = \{a+bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ together with the degree function $\deg(z) = |z|^2, z \in \mathbb{Z}[i]^*$. Note that $\mathbb{Z}[i]$ is called the ring of *Gaussian integers*.
- (d) The polynomial ring K[x, y], where *K* is a field and the degree function is set to be the total degree of the polynomial.

Exercise 13. Solve the following Chinese remainder problems, i.e. find solutions $x, y \in \mathbb{Z}$ of the subsequent systems of simultaneous congruences:

$x \equiv 1 \mod 8$		$y \equiv 5 \mod 8$
$x \equiv 2 \mod 25$	and	$y \equiv 12 \mod 25.$
$x \equiv 3 \mod 81$		$y \equiv 47 \mod 81$

Exercise 14. Consider the polynomials

$$f = x^7 - 3x^5 - 2x^4 + 13x^3 - 15x^2 + 7x - 1,$$

$$g = x^6 - 9x^5 + 18x^4 - 13x^3 + 2x^2 + 2x - 1.$$

Find gcd(f, g) in $\mathbb{Z}[x]$ using the modular algorithm. Verify whether the integer factors of the resultant of f/h and g/h are unlucky primes in the modular approach to GCD computation.