Due date: 9.11.2021

Exercise 10. Let I be an integral domain and consider polynomials $a, b \in I[x]$ such that $b \neq 0$ and $m:=\operatorname{deg}(a) \geq \operatorname{deg}(b)=: n$. Show that there are uniquely defined polynomials $q, r \in I[x]$ such that $\operatorname{lc}(b)^{m-n+1} a=q b+r$ and either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(b)$.

Exercise 11. If R is a commutative ring (with unit), show that the polynomial ring $R[x]$ is a principal ideal domain if and only if R is a field. What conditions must R satisfy such that $R[x]$ is an Euclidean domain?

Exercise 12. Which of the following domains (with the usual addition and multiplication) are Euclidean domains and which are not? Justify your answer.
(a) \mathbb{Z} together with the degree function $\operatorname{deg}(i)=|i|, i \in \mathbb{Z}^{*}$.
(b) \mathbb{Q} together with the degree function $\operatorname{deg}(q)=|q|, q \in \mathbb{Q}^{*}$.
(c) $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ together with the degree function $\operatorname{deg}(z)=|z|^{2}, z \in \mathbb{Z}[i]^{*}$. Note that $\mathbb{Z}[i]$ is called the ring of Gaussian integers.
(d) The polynomial ring $K[x, y]$, where K is a field and the degree function is set to be the total degree of the polynomial.

Exercise 13. Solve the following Chinese remainder problems, i.e. find solutions $x, y \in \mathbb{Z}$ of the subsequent systems of simultaneous congruences:

$$
\begin{array}{lll}
x \equiv 1 \bmod 8 \\
x \equiv 2 \bmod 25 \\
x \equiv 3 \bmod 81
\end{array} \quad \text { and } \quad \begin{aligned}
& y \equiv 5 \bmod 8 \\
& y \equiv 12 \bmod 25 . \\
& y \equiv 47 \bmod 81
\end{aligned}
$$

Exercise 14. Consider the polynomials

$$
\begin{aligned}
& f=x^{7}-3 x^{5}-2 x^{4}+13 x^{3}-15 x^{2}+7 x-1, \\
& g=x^{6}-9 x^{5}+18 x^{4}-13 x^{3}+2 x^{2}+2 x-1 .
\end{aligned}
$$

Find $\operatorname{gcd}(f, g)$ in $\mathbb{Z}[x]$ using the modular algorithm. Verify whether the integer factors of the resultant of f / h and g / h are unlucky primes in the modular approach to GCD computation.

