Due date: 19.10.2021

Exercise 5. Implement the extended Euclidean algorithm GCD_EUCLID from the lecture notes for $K = \mathbb{Q}$. Test your implementation on the input:

- (a) $f_1 = x^3 + 3x^2 + 2x + 1$ and $g_1 = x^2 + x + 1$,
- (b) $f_2 = x^6 + x^5 x^4 x^2 4x 2$ and $g_2 = x^5 3x^4 x^3 + 3x^2 2x + 6$.

Note: You may use the field operations and the command for division with remainder offered by your CAS. You may NOT use any built-in GCD methods.

Exercise 6. Let *U* be a unique factorization domain. For non-zero polynomials $f, g \in U[x]$ we write $f \sim g$ if and only if there exists a unit $u \in U$ such that f = ug. Show that:

- (a) $\operatorname{cont}(fg) \sim \operatorname{cont}(f) \cdot \operatorname{cont}(g)$,
- (b) $pp(fg) \sim pp(f) \cdot pp(g)$,
- (c) $\operatorname{cont}(\operatorname{gcd}(f,g)) \sim \operatorname{gcd}(\operatorname{cont}(f),\operatorname{cont}(g)),$
- (d) $pp(gcd(f,g)) \sim gcd(pp(f),pp(g))$.

Hint: U[x] is a unique factorization domain. Every non-zero non-unit polynomial can be factored uniquely (up to reordering and multiplication by units) into the product of finitely many irreducible (prime) elements. Let $f = up_1^{a_1} \cdots p_n^{a_n}$ and $g = vp_1^{b_1} \cdots p_n^{b_n}$ be prime factorizations of f and g, respectively, where $u, v \in U$ are units and the p_i denote distinct primes with corresponding exponents $a_i, b_i \ge 0$. What is gcd(f, g) in this case?

Exercise 7. Let us extend the definition of a greatest common divisor (GCD) from the lecture notes: A *greatest common divisor* of a finite number of polynomials $f_1, ..., f_m \in K[x]$, where *K* is a field and m > 1, is a polynomial $g \in K[x]$ with the following properties:

- g divides all polynomials f_1, \ldots, f_m and
- if *h* is another polynomial which divides all $f_1, ..., f_m$, then *h* divides g.

If *g* satisfies these properties, then we write $g = gcd(f_1, ..., f_m)$. Show that:

- (a) The GCD of $f_1, ..., f_m$ exists and is unique up to multiplication by elements of K^* .¹
- (b) The GCD generates the ideal spanned by $f_1, ..., f_m$, i.e. $\langle \text{gcd}(f_1, ..., f_m) \rangle = \langle f_1, ..., f_m \rangle$.
- (c) For m > 2 we have that $gcd(f_1, ..., f_m) = gcd(f_1, gcd(f_2, ..., f_m))$.

Hint: Use the fact that K[x] is a principal ideal domain.

Exercise 8 (Membership problem). Consider polynomials $f, f_1, ..., f_m \in K[x]$, where K is a field and m is a positive integer. Develop an algorithm for deciding whether $f \in \langle f_1, ..., f_m \rangle$ based on the algorithm GCD_EUCLID from the lecture notes.²

¹Since GCDs are unique up to multiplication by units, we usually speak of *the* GCD instead of *a* GCD. ²You do not have to implement the algorithm, it suffices to provide pseudo-code.

Exercise 9. Consider the polynomials over the integers $f = 6x^5 + 2x^4 - 19x^3 - 6x^2 + 15x + 9$ and $g = 5x^4 - 4x^3 + 2x^2 - 2x - 2$. Find the GCD of *f* and *g* by a polynomial remainder sequence.