Due date: 19.10.2021

Exercise 5. Implement the extended Euclidean algorithm GCD_EUCLID from the lecture notes for $K=\mathbb{Q}$. Test your implementation on the input:
(a) $f_{1}=x^{3}+3 x^{2}+2 x+1$ and $g_{1}=x^{2}+x+1$,
(b) $f_{2}=x^{6}+x^{5}-x^{4}-x^{2}-4 x-2$ and $g_{2}=x^{5}-3 x^{4}-x^{3}+3 x^{2}-2 x+6$.

Note: You may use the field operations and the command for division with remainder offered by your CAS. You may NOT use any built-in GCD methods.

Exercise 6. Let U be a unique factorization domain. For non-zero polynomials $f, g \in U[x]$ we write $f \sim g$ if and only if there exists a unit $u \in U$ such that $f=u g$. Show that:
(a) $\operatorname{cont}(f g) \sim \operatorname{cont}(f) \cdot \operatorname{cont}(g)$,
(b) $\mathrm{pp}(f g) \sim \mathrm{pp}(f) \cdot \mathrm{pp}(g)$,
(c) $\operatorname{cont}(\operatorname{gcd}(f, g)) \sim \operatorname{gcd}(\operatorname{cont}(f), \operatorname{cont}(g))$,
(d) $\operatorname{pp}(\operatorname{gcd}(f, g)) \sim \operatorname{gcd}(\operatorname{pp}(f), \operatorname{pp}(g))$.

Hint: $U[x]$ is a unique factorization domain. Every non-zero non-unit polynomial can be factored uniquely (up to reordering and multiplication by units) into the product of finitely many irreducible (prime) elements. Let $f=u p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}$ and $g=u p_{1}^{b_{1}} \cdots p_{n}^{b_{n}}$ be prime factorizations of f and g, respectively, where $u, v \in U$ are units and the p_{i} denote distinct primes with corresponding exponents $a_{i}, b_{i} \geq 0$. What is $\operatorname{gcd}(f, g)$ in this case?

Exercise 7. Let us extend the definition of a greatest common divisor (GCD) from the lecture notes: A greatest common divisor of a finite number of polynomials $f_{1}, \ldots, f_{m} \in K[x]$, where K is a field and $m>1$, is a polynomial $g \in K[x]$ with the following properties:

- g divides all polynomials f_{1}, \ldots, f_{m} and
- if h is another polynomial which divides all f_{1}, \ldots, f_{m}, then h divides g.

If g satisfies these properties, then we write $g=\operatorname{gcd}\left(f_{1}, \ldots, f_{m}\right)$. Show that:
(a) The GCD of f_{1}, \ldots, f_{m} exists and is unique up to multiplication by elements of $K^{*}{ }^{1}$
(b) The GCD generates the ideal spanned by f_{1}, \ldots, f_{m}, i.e. $\left\langle\operatorname{gcd}\left(f_{1}, \ldots, f_{m}\right)\right\rangle=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
(c) For $m>2$ we have that $\operatorname{gcd}\left(f_{1}, \ldots, f_{m}\right)=\operatorname{gcd}\left(f_{1}, \operatorname{gcd}\left(f_{2}, \ldots, f_{m}\right)\right)$.

Hint: Use the fact that $K[x]$ is a principal ideal domain.
Exercise 8 (Membership problem). Consider polynomials $f, f_{1}, \ldots, f_{m} \in K[x]$, where K is a field and m is a positive integer. Develop an algorithm for deciding whether $f \in\left\langle f_{1}, \ldots, f_{m}\right\rangle$ based on the algorithm GCD_EUCLID from the lecture notes. ${ }^{2}$

[^0]Exercise 9. Consider the polynomials over the integers $f=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9$ and $g=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2$. Find the GCD of f and g by a polynomial remainder sequence.

[^0]: ${ }^{1}$ Since GCDs are unique up to multiplication by units, we usually speak of the GCD instead of a GCD.
 ${ }^{2}$ You do not have to implement the algorithm, it suffices to provide pseudo-code.

