Due date: 12.10.2021

The exercises are meant as an invitation to try out different computer algebra systems. ${ }^{1}$ Exercise sheets contain problems which have to be solved on a computer from time to time. Furthermore, most projects will contain explicit programming tasks, so it is a good idea to familiarize yourself with a CAS early on.

Here are three of the most popular and user-friendly systems. Any of these will be a perfect choice for the course.

1. Wolfram Mathematica (https://www.wolfram.com/mathematica/),
2. SageMath (https://www.sagemath.org/); downloadable for free at http://www. sagemath.org/download.html,
3. Maple (https://www.maplesoft.com/products/maple/).

Exercise 1. Consider the following system of equations:

$$
\left\{\begin{array}{rl}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} & =1 \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}+x_{5} & =2 \\
x_{4}+2 x_{5} & =3 \\
2 x_{4}+3 x_{5} & =4 \\
3 x_{4}+4 x_{5} & =5
\end{array} .\right.
$$

Use a CAS of your choice to find all solutions for $x_{1}, x_{2}, \ldots, x_{5}$. In general, how would you solve such a system of linear equations? What are the commands in your CAS required for constructing and solving linear systems?

Exercise 2. Use a CAS to compute greatest common divisors (GCDs) in different domains.

1. Compute the GCD of the integers $a=33600, b=784080$, and $c=214500$. Is the number 13860 contained in the ideal $\langle a, b, c\rangle \subseteq \mathbb{Z}$?
2. Compute the GCD of the polynomials $f, g \in \mathbb{Q}[x]$, where $f=6 x^{5}+2 x^{4}-19 x^{3}-$ $6 x^{2}+15 x+9$ and $g=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2$. Is $\langle f, g\rangle \subseteq \mathbb{Q}[x]$ a proper ideal, i.e. is the ideal different form the entire polynomial ring?

Hint: Both \mathbb{Z} and $\mathbb{Q}[x]$ are so-called principal ideal domains. Every ideal of such a ring is principal, viz. generated by a single element. In our case, the single generator is determined by the GCD of the generating elements.

Exercise 3. Consider the polynomial $f=x^{4}+1 \in \mathbb{F}_{p}[x]$, where p is a prime. Find out how to factor polynomials over finite fields in your favourite CAS and compute the factorization of f in $\mathbb{F}_{p}[x]$ for the first 15 primes.

Bonus: How many factors does f have in $\mathbb{F}_{p}[x]$ for a given prime p ? You should consider the cases $p=2,8 k+1,8 k+3,8 k+5,8 k+7$, separately. Does f factor over \mathbb{Q} ?

[^0]Exercise 4. Consider the polynomial $f=x^{5}-x^{4}-2 x^{3}+3 x^{2}-2$. Use a CAS to perform the following tasks:

1. Compute the roots of f numerically. You have influence on floating point precision if you want to.
2. Plot the graph of the function induced by f. Choose the plotting interval in such a way that you can "see" the real roots of f.
3. Compute the roots of f symbolically. What output does your CAS generate?
4. Repeat these steps for the polynomial $g=x^{5}-x^{4}+x^{3}-x^{2}+x-2$.

[^0]: ${ }^{1}$ In the sequel, we use the abbreviation CAS for computer algebra system.

