Übungsblatt 5

Besprechung am 12.11.2020

Aufgabe 1 Berechnen Sie die exakten Werte (d.h. keine Gleitkommazahlen) von:

- a) $\cos(\tan^{-1}(\frac{1}{\sqrt{3}}))$ c) $\tan(\frac{\pi}{2})$ b) $\cos^{-1}(\sin(5\pi))$ d) $\tan(\cos^{-1}(\frac{1}{2}))$

e) $\sin(\sin^{-1}(2))$

- f) $\sin^{-1}(\sin(2))$

Alle Winkel werden in Bogenmaß (radians) eingegeben.

Aufgabe 2 Es seien n > 0 eine natürliche Zahl und $x = (x_1, \ldots, x_n)$ eine endliche Folge strikt positiver reeller Zahlen $(x_i > 0)$ mit der Eigenschaft $\prod_{i=1}^n x_i = 1$. Zeigen Sie, dass dann $\sum_{i=1}^n x_i \ge n$.

Aufgabe 3 Seien $\lambda \in \mathbb{R}$ fest gewählt und $(a_n)_{n\geq 1} \in \mathbb{R}^{\mathbb{N}}$ eine konvergente Folge mit $\lim_{n\to\infty} a_n = a_n$ und $a \in \mathbb{R}$. Beweisen Sie mit Definition 3.5 (bzw. (6)) aus dem Skriptum: (a) $\lim_{n \to \infty} \lambda = \lambda$; (b) $\lim_{n \to \infty} \lambda a_n = \lambda a$; (c) $\lim_{n \to \infty} |a_n| = |a|$.

Aufgabe 4 Sei $(a_n)_{n\geq 1}\in\mathbb{R}^{\mathbb{N}}$ eine konvergente Folge mit $\lim_{n\to\infty}a_n=a$ und $a\in\mathbb{R}$. Beweisen Sie mit Definition 3.5 (bzw. (6)) aus dem Skriptum: (a) Wenn $a_n \neq 0 \ \forall n \in \mathbb{N} \text{ und } a \neq 0, \lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a};$ (b) Wenn $a_n \geq 0 \ \forall n \in \mathbb{N}, \lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

Aufgabe 5 Seien $a = a_0, a_1 a_2 \dots$ eine reelle Zahl und $a^{(n)} = a_0, a_1 a_2 \dots a_n$ die rationale Zahl. Zeigen Sie $\lim_{n\to\infty} a^{(n)} = a$.

Aufgabe 6 Seien $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ und $(c_n)_{n\geq 1}$ Folgen mit den Eigenschaften

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n \text{ und } \forall n \ge 0 : a_n \ge b_n \ge c_n.$$

Zeigen Sie $\lim_{n\to\infty} b_n = L$.

Aufgabe 7 Seien $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$ zwei konvergente Folgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$. Beweisen Sie die folgende Aussage aus der Vorlesung:

$$\lim_{n \to \infty} a_n b_n = ab.$$

Hinweis: Zeigen Sie, dass sowohl $\lim_{n\to\infty} (a_n-a) b_n = 0$ als auch $\lim_{n\to\infty} (b_n-b) a = 0$.