Due date: 15.12.2020

37. Exercise

Implement Buchberger's algorithm GROEBNER_B for computing Gröbner bases in polynomial rings over \mathbb{Q} . Use your implementation to compute a Gröbner basis of the ideal $\langle f_1, f_2 \rangle \subseteq \mathbb{Q}[x, y]$ with respect to the lexicographic ordering with x < y, where

$$f_1 = x y^2 + x^2 + x$$

 $f_2 = x^2 y + x$.

Remark: You should use the command for computing the normal form of a polynomial offered by your CAS.¹

38. Exercise

Let $R = F[x_1, ..., x_n]$ be the polynomial ring over the field F. Consider linear polynomials

$$f_i = a_{i1} x_1 + \dots + a_{in} x_n \in R,$$

where $1 \le i \le m, m \in \mathbb{Z}^+$. Denote by $A = (a_{ij})$ the $m \times n$ -matrix whose rows are formed by coefficients of the f_i . Let $B = (b_{ij})$ be the reduced row echelon matrix obtained from A. The goal of this exercise is to prove that the non-zero polynomials obtained from the rows of B constitute the normed reduced Gröbner basis² of the ideal $I = \langle f_1, \dots, f_m \rangle_R$ with respect to the lexicographic ordering with $x_1 > \dots > x_n$.

(a) Let *l* be the number of non-zero rows in *B* and consider the polynomials g_1, \dots, g_l , where

$$g_k = b_{k1} x_1 + \dots + b_{kn} x_n$$

for $1 \le k \le l$. Show that $\langle g_1, ..., g_l \rangle_R = I$.

- (b) Show that $G = \{g_1, ..., g_l\}$ is a Gröbner basis of the ideal I with respect to the aforementioned admissible ordering.
- (c) Explain why the Gröbner basis *G* is normed and reduced.

¹For Mathematica users: use the command PolynomialReduce. Maple users: use Groebner:-NormalForm. Finally, for SageMath the command is: f.reduce(S), where f is a polynomial and S is a list of polynomials. ²Cf. Definition 4.2.24.

39. Exercise

Let F be a field. Show that the result of applying the Euclidean algorithm in F[x] to any pair of polynomials f, g is a reduced Gröbner basis for $\langle f, g \rangle \subseteq F[x]$.

40. Exercise

Let $R = F[x_1, ..., x_n]$ be the polynomial ring over the field $F, I \subseteq R$ an ideal and $G \subseteq I$ a Gröbner basis of I. Prove the following statements for $f, g \in G$ with $f \neq g$:³

- (a) If $lpp(f) \mid lpp(g)$, then $G \setminus \{g\}$ is a Gröbner basis of I.
- (b) If $g \longrightarrow_f g'$, then $(G \setminus \{g\}) \cup \{g'\}$ is a Gröbner basis of I.

41. Exercise

Let *R* be as in the previous exercise. Given a subset $G \subseteq F[x_1, ..., x_n]$ and let $I = \langle G \rangle_R$. Show that *G* is a Gröbner basis of *I* (with respect to a fixed admissible ordering >) if and only if⁴

$$\langle \text{initial}_{>}(G) \rangle_R = \langle \text{initial}_{>}(I) \rangle_R.$$

As an early Christmas gift: This is the last exercise sheet!

Good luck with the projects!

³Cf. Theorem 4.2.23 in the lecture notes.

⁴This will prove the equivalence of Theorem 4.2.22 (f) and gives another characterization of Gröbner bases which is quite useful for theoretical proofs.