## Due date: 15.12.2020

## 37. Exercise

Implement Buchberger's algorithm GROEBNER_B for computing Gröbner bases in polynomial rings over $\mathbb{Q}$. Use your implementation to compute a Gröbner basis of the ideal $\left\langle f_{1}, f_{2}\right\rangle \subseteq$ $\mathbb{Q}[x, y]$ with respect to the lexicographic ordering with $x<y$, where

$$
\begin{aligned}
& f_{1}=x y^{2}+x^{2}+x \\
& f_{2}=x^{2} y+x .
\end{aligned}
$$

Remark: You should use the command for computing the normal form of a polynomial offered by your CAS. ${ }^{1}$

## 38. Exercise

Let $R=F\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over the field $F$. Consider linear polynomials

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \in R,
$$

where $1 \leq i \leq m, m \in \mathbb{Z}^{+}$. Denote by $A=\left(a_{i j}\right)$ the $m \times n$-matrix whose rows are formed by coefficients of the $f_{i}$. Let $B=\left(b_{i j}\right)$ be the reduced row echelon matrix obtained from $A$. The goal of this exercise is to prove that the non-zero polynomials obtained from the rows of $B$ constitute the normed reduced Gröbner basis ${ }^{2}$ of the ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle_{R}$ with respect to the lexicographic ordering with $x_{1}>\cdots>x_{n}$.
(a) Let $l$ be the number of non-zero rows in $B$ and consider the polynomials $g_{1}, \ldots, g_{l}$, where

$$
g_{k}=b_{k 1} x_{1}+\cdots+b_{k n} x_{n}
$$

for $1 \leq k \leq l$. Show that $\left\langle g_{1}, \ldots, g_{l}\right\rangle_{R}=I$.
(b) Show that $G=\left\{g_{1}, \ldots, g_{l}\right\}$ is a Gröbner basis of the ideal $I$ with respect to the aforementioned admissible ordering.
(c) Explain why the Gröbner basis $G$ is normed and reduced.

[^0]
## 39. Exercise

Let $F$ be a field. Show that the result of applying the Euclidean algorithm in $F[x]$ to any pair of polynomials $f, g$ is a reduced Gröbner basis for $\langle f, g\rangle \subseteq F[x]$.

## 40. Exercise

Let $R=F\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over the field $F, I \subseteq R$ an ideal and $G \subseteq I$ a Gröbner basis of $I$. Prove the following statements for $f, g \in G$ with $f \neq g$. ${ }^{3}$
(a) If $\operatorname{lpp}(f) \mid \operatorname{lpp}(g)$, then $G \backslash\{g\}$ is a Gröbner basis of $I$.
(b) If $g \longrightarrow_{f} g^{\prime}$, then $(G \backslash\{g\}) \cup\left\{g^{\prime}\right\}$ is a Gröbner basis of $I$.

## 41. Exercise

Let $R$ be as in the previous exercise. Given a subset $G \subseteq F\left[x_{1}, \ldots, x_{n}\right]$ and let $I=\langle G\rangle_{R}$. Show that $G$ is a Gröbner basis of $I$ (with respect to a fixed admissible ordering $>$ ) if and only if ${ }^{4}$

$$
\left\langle\operatorname{initial}_{>}(G)\right\rangle_{R}=\left\langle\operatorname{initial}_{>}(I)\right\rangle_{R}
$$

## As an early Christmas gift: This is the last exercise sheet!

## Good luck with the projects!

[^1]
[^0]:    ${ }^{1}$ For Mathematica users: use the command PolynomialReduce. Maple users: use Groebner:-NormalForm. Finally, for SageMath the command is: f.reduce (S), where $f$ is a polynomial and $S$ is a list of polynomials. ${ }^{2}$ Cf. Definition 4.2.24.

[^1]:    ${ }^{3} \mathrm{Cf}$. Theorem 4.2.23 in the lecture notes.
    ${ }^{4}$ This will prove the equivalence of Theorem 4.2 .22 (f) and gives another characterization of Gröbner bases which is quite useful for theoretical proofs.

