Due date: 24.11.2020

Make yourself familiar with the notations of Definition 4.2.6, lecture notes p. 35. In particular, you should know what the terms $lpp(\cdot)$, $lc(\cdot)$ and $initial(\cdot)$ of a non-zero polynomial with respect to an admissible ordering are.

28. Exercise

An admissible ordering of the commutative monoid [x, y, z] induces an ordering of the terms of a polynomial. Let $x_1 = x$, $x_2 = y$ and $x_3 = z$. Rewrite each of the polynomials

 $f = 2x + 3y + z + x^2 - z^2 + x^3$ and $g = 2x^2y^8 - 3x^5yz^4 + xyz^3 - xy^4$,

such that the terms are ordered with respect to

- (a) the lexicographic ordering with $\pi = id$,
- (b) the graduated lexicographic ordering with $\pi = id$ and weight function 1_{const} ,
- (c) the graduated reverse lexicographic ordering.

What are the leading power product, leading coefficient and initial in each case? Repeat (a)–(c) with the variable permutation $x_1 = z$, $x_2 = y$ and $x_3 = x$.

Remark: You can do the exercise by hand or use a CAS.

29. Exercise

Example 4.2.4, lecture notes p. 33/34, lists some well-known orderings of the commutative monoid of power products and claims that these are admissible orderings. Verify this claim for the subsequent cases.

- (a) Prove that the graduated reverse lexicographic ordering from Example 4.2.4 (c) is an admissible ordering.
- (b) Show that the product ordering from Example 4.2.4 (d) is an admissible ordering.

30. Exercise

Let *F* be a field and $[X] = [x_1, ..., x_n], n \in \mathbb{Z}^+$. Prove or disprove the subsequent claims.

- (a) If $f, g \in F[X]$ are non-zero polynomials, then initial(f g) = initial(f) initial(g).
- (b) Given non-zero polynomials $f_i, g_i \in F[X]$ with $i \in \{1, ..., s\}, s \in \mathbb{Z}^+$. Then

$$\operatorname{lpp}\left(\sum_{j=1}^{s} f_{j} g_{j}\right) = \operatorname{lpp}(f_{i} g_{i})$$

for some *i*.

- (c) If $[X] = [x_1]$, then there exists a unique admissible ordering on this commutative monoid of power products.
- (d) Let $[X] = [x_1, x_2]$ and $f = x_1^2 + 2x_1x_2 x_2^2$. There exist admissible orderings $<_1, <_2$ and $<_3$ such that $lpp_{<_1}(f) = x_1^2$, $lpp_{<_2}(f) = x_1x_2$ and $lpp_{<_3}(f) = x_2^2$.

31. Exercise

Let *R* be a commutative ring with 1. Show that the following conditions are equivalent:

- (a) Every ideal in *R* is finitely generated.
- (b) There are no infinite strictly ascending chains of ideals in *R*.
- (c) Every non-empty set *S* of ideals in *R* contains a maximal element, i.e. an ideal $I \in S$ such that $\forall J \in S : I \subseteq J \Rightarrow I = J$.