Due date: 10.11.2020

19. Exercise

Given non-constant polynomials $f, g \in I[x]$ over an integral domain I such that $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n$.
(a) Prove that $\operatorname{res}_{x}(f, g)=(-1)^{m n} \operatorname{res}_{x}(g, f)$.
(b) Let $\lambda, \mu \in I \backslash\{0\}$. Show that $\operatorname{res}_{x}(\lambda f, \mu g)=\lambda^{n} \mu^{m} \operatorname{res}_{x}(f, g)$.
(c) Given a subring $R \subseteq I$. If $f, g \in R[x]$, can we conclude that $\operatorname{res}_{x}(f, g) \in R$?
(d) Let $p, q \in \mathbb{Q}[x]$, where $p=x^{5}-3 x^{4}-2 x^{3}+3 x^{2}+7 x+6$ and $q=x^{4}+x^{2}+1$. Construct the Sylvester matrix $\operatorname{Syl}_{x}(p, q)$ and compute the resultant $\operatorname{res}_{x}(p, q)$. What does the resultant tell you about common factors of p and q in $\mathbb{Q}[x]$?

20. Exercise

Let $f, g \in F[x]$ be non-constant polynomials over a field F. Perform division with remainder of f by g, i.e. $f=q g+r$ such that $q, r \in F[x]$ and $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$. Assume that r is non-constant and let $\operatorname{deg}(f)=m, \operatorname{deg}(g)=n$ and $\operatorname{deg}(r)=o$. Show that in this case

$$
\operatorname{res}_{x}(f, g)=(-1)^{m n} \operatorname{lc}(g)^{m-o} \operatorname{res}_{x}(g, r)
$$

21. Exercise

In this exercise you should prove the following claim from the lecture notes: Consider nonconstant polynomials $f, g \in F[x]$ over the field F such that $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n$. Denote by $\zeta_{1}, \ldots, \zeta_{m}$ and $\eta_{1}, \ldots, \eta_{n}$ the roots of f and g in a common splitting field, respectively. Now show that

$$
\operatorname{res}_{x}(f, g)=\operatorname{lc}(f)^{n} \operatorname{lc}(g)^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\zeta_{i}-\eta_{j}\right)
$$

22. Exercise

Given, as usual, non-constant polynomials $f, g \in F[x]$ over a field F such that $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n$. Let I denote the ideal $\langle f\rangle \subseteq F[x]$ and define the multiplication map

$$
\begin{aligned}
\varphi: F[x] / I & \rightarrow F[x] / I, \\
h+I & \mapsto g h+I .
\end{aligned}
$$

Prove that $\operatorname{res}_{x}(f, g)=\operatorname{lc}(f)^{n} \operatorname{det}(\varphi)$.
Note: The quotient ring $F[x] / I$ is an F-vector space of dimension m by interpreting the equivalence classes as remainders on division by f. It is easy to show that φ is a linear map. Recall that the determinant of a linear map is defined to be the determinant of any matrix representing this map (with respect to some basis of course).

