Due date: 3.11.2020

15. Exercise

Given a Euclidean domain *E*, prove the following claims:

(a) Let $m_1, ..., m_n \in E \setminus \{0\}$, where $n \in \mathbb{Z}^+$, be pairwise relatively prime an define

$$\overline{m}_i \coloneqq \prod_{\substack{j=1\\j\neq i}}^n m_j.$$

Then m_i and \overline{m}_i are relatively prime for all $1 \le i \le n$.

(b) Let $r, s \in E$ and $m, n \in E \setminus \{0\}$ such that m and n are relatively prime. Then $r \equiv s \mod m$ and $r \equiv s \mod n$ if and only if $r \equiv s \mod m n$.

16. Exercise

The following is a famous (resolved) problem from the field of algebraic geometry asking for a relation between geometric objects and algebraic structures. We will give an answer to a special case in this exercise.

Problem (Nullstellensatz). *Given a set of polynomials* $S \subseteq F[x_1, ..., x_n]$ *over an algebraically closed base field* F. *Is there a relation between the ideal* $\langle S \rangle$ *and* I(Z(S))?

The notation $\mathbf{Z}(\cdot)$ and $\mathbf{I}(\cdot)$ stand for the subsequent constructions. Let $S \subseteq F[x_1, ..., x_n]$ and define

$$\mathbf{Z}(S) \coloneqq \{(a_1, \dots, a_n) \in F^n \mid f(a_1, \dots, a_n) = 0 \text{ for all } f \in S\},\$$

i.e. the set of all common roots of the polynomials in *S*. A set which is defined by the zerolocus of a collection of polynomials is called an *affine algebraic set*. For an affine algebraic set $A \subseteq F^n$ we denote by

$$\mathbf{I}(A) := \{ f \in F[x_1, \dots, x_n] \mid f(a_1, \dots, a_n) = 0 \text{ for all } (a_1, \dots, a_n) \in A \}$$

the ideal of all polynomials which vanish on all points in A.

Consider the case where the polynomial ring is $\mathbb{C}[x]$. Since this is a principal ideal domain every ideal is generated by a single polynomial. Furthermore, every complex polynomial $f \in \mathbb{C}[x]$ factors completely into linear polynomials, i.e.

$$f = c (x - r_1)^{e_1} \cdots (x - r_k)^{e_k},$$
(1)

where $r_1, ..., r_k \in \mathbb{C}$ are the distinct roots of f, the exponents e_i are positive numbers denoting the multiplicities of the roots and $c \in \mathbb{C}$.

Let $f \in \mathbb{C}[x]$ be a non-zero polynomial with a factorization as in Equation (1).

(a) Show that

$$\langle f_{\rm sfp} \rangle = \mathbf{I}(\mathbf{Z}(\{f\})),$$

where $f_{sfp} = c(x - r_1) \cdots (x - r_k)$ is called the *square-free part* of *f*.

(b) The square-free part of the polynomial f can be computed efficiently. Show that

$$f_{\rm sfp} = \frac{f}{\gcd(f, f')}.$$

(c) Find a single generator of the ideal $I(Z({f,g})) \subseteq \mathbb{C}[x]$, where

$$f = x^{6} - x^{5} - 2x^{4} + 2x^{3} + x^{2} - x$$
 and $g = x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1$.

17. Exercise

Implement the algorithm SQFR_FACTOR from the lecture notes in a CAS and compute the square-free factors of the polynomial

$$f = x^9 + 7x^8 + 17x^7 + 12x^6 - 17x^5 - 37x^4 - 21x^3 + 10x^2 + 20x + 8.$$

What is the difference between the square-free factors and the irreducible factors in $\mathbb{Z}[x]$ of the polynomial *f*?

18. Exercise

Prove Theorem 2.3.3 from the lecture notes: Let *F* be a field of characteristic zero and $f \in F[x_1, ..., x_n] \setminus \{0\}$. The polynomial *f* is square-free if and only if

$$\operatorname{gcd}\left(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right) = 1$$

Does the theorem hold for fields of positive characteristic?