Due date: 3.11.2020

15. Exercise

Given a Euclidean domain E, prove the following claims:
(a) Let $m_{1}, \ldots, m_{n} \in E \backslash\{0\}$, where $n \in \mathbb{Z}^{+}$, be pairwise relatively prime an define

$$
\bar{m}_{i}:=\prod_{\substack{j=1 \\ j \neq i}}^{n} m_{j} .
$$

Then m_{i} and \bar{m}_{i} are relatively prime for all $1 \leq i \leq n$.
(b) Let $r, s \in E$ and $m, n \in E \backslash\{0\}$ such that m and n are relatively prime. Then $r \equiv s \bmod m$ and $r \equiv s \bmod n$ if and only if $r \equiv s \bmod m n$.

16. Exercise

The following is a famous (resolved) problem from the field of algebraic geometry asking for a relation between geometric objects and algebraic structures. We will give an answer to a special case in this exercise.

Problem (Nullstellensatz). Given a set of polynomials $S \subseteq F\left[x_{1}, \ldots, x_{n}\right]$ over an algebraically closed base field F. Is there a relation between the ideal $\langle S\rangle$ and $\mathbf{I}(\mathbf{Z}(S))$?

The notation $\mathbf{Z}(\cdot)$ and $\mathbf{I}(\cdot)$ stand for the subsequent constructions. Let $S \subseteq F\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathbf{Z}(S):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in F^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in S\right\}
$$

i.e. the set of all common roots of the polynomials in S. A set which is defined by the zerolocus of a collection of polynomials is called an affine algebraic set. For an affine algebraic set $A \subseteq F^{n}$ we denote by

$$
\mathbf{I}(A):=\left\{f \in F\left[x_{1}, \ldots, x_{n}\right] \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in A\right\}
$$

the ideal of all polynomials which vanish on all points in A.
Consider the case where the polynomial ring is $\mathbb{C}[x]$. Since this is a principal ideal domain every ideal is generated by a single polynomial. Furthermore, every complex polynomial $f \in \mathbb{C}[x]$ factors completely into linear polynomials, i.e.

$$
\begin{equation*}
f=c\left(x-r_{1}\right)^{e_{1}} \cdots\left(x-r_{k}\right)^{e_{k}}, \tag{1}
\end{equation*}
$$

where $r_{1}, \ldots, r_{k} \in \mathbb{C}$ are the distinct roots of f, the exponents e_{i} are positive numbers denoting the multiplicities of the roots and $c \in \mathbb{C}$.

Let $f \in \mathbb{C}[x]$ be a non-zero polynomial with a factorization as in Equation (1).
(a) Show that

$$
\left\langle f_{\mathrm{sfp}}\right\rangle=\mathbf{I}(\mathbf{Z}(\{f\}))
$$

where $f_{\text {sfp }}=c\left(x-r_{1}\right) \cdots\left(x-r_{k}\right)$ is called the square-free part of f.
(b) The square-free part of the polynomial f can be computed efficiently. Show that

$$
f_{\mathrm{sfp}}=\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}
$$

(c) Find a single generator of the ideal $\mathbf{I}(\mathbf{Z}(\{f, g\})) \subseteq \mathbb{C}[x]$, where

$$
f=x^{6}-x^{5}-2 x^{4}+2 x^{3}+x^{2}-x \quad \text { and } \quad g=x^{5}+x^{4}-2 x^{3}-2 x^{2}+x+1
$$

17. Exercise

Implement the algorithm SQFR_FACTOR from the lecture notes in a CAS and compute the square-free factors of the polynomial

$$
f=x^{9}+7 x^{8}+17 x^{7}+12 x^{6}-17 x^{5}-37 x^{4}-21 x^{3}+10 x^{2}+20 x+8
$$

What is the difference between the square-free factors and the irreducible factors in $\mathbb{Z}[x]$ of the polynomial f ?

18. Exercise

Prove Theorem 2.3.3 from the lecture notes: Let F be a field of characteristic zero and $f \in F\left[x_{1}, \ldots, x_{n}\right] \backslash\{0\}$. The polynomial f is square-free if and only if

$$
\operatorname{gcd}\left(f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=1
$$

Does the theorem hold for fields of positive characteristic?

