Due date: 27.10.2020

Theorem (Chinese remainder theorem). *Let* R *be a commutative ring with unity and consider the ideals* $I_1, ..., I_n \subseteq R$, *where* $n \in \mathbb{Z}^+$. *The map*

$$\varphi : R \to R/I_1 \times \cdots \times R/I_n$$
$$r \mapsto (r+I_1, \dots, r+I_n)$$

is a ring homomorphismus whose kernel is precisely $I_1 \cap \cdots \cap I_n$. If the ideals I_1, \ldots, I_n are pairwise comaximal,¹ then φ is surjective and $I_1 \cap \cdots \cap I_n = I_1 \cdot \cdots \cdot I_n$.

Note: For rings R_1 , R_2 the operation $R_1 \times R_2$ denotes their direct product. Furthermore, given ideals I, J in a ring R the operations I + J and $I \cdot J$ denote the usual ideal addition and product, respectively.

10. Exercise

Consider the extended definition² of a greatest common divisor (GCD): A greatest common divisor of a finite number of polynomials $f_1, ..., f_n \in K[x]$, where K is a field and $n \ge 2$, is a polynomial $g \in K[x]$ with the following properties:

- 1. The polynomial g divides all polynomials $f_1, ..., f_n$.
- 2. If *h* is another polynomial which divides all $f_1, ..., f_n$, then *h* divides *g*.

When g satisfies these properties we write $g = gcd(f_1, ..., f_n)$.

The GCD of a finite number of polynomials exists and is unique up to multiplication by nonzero constants in *K*. Prove the following claims:

(a) The GCD generates the ideal spanned by the f_i , i.e.

$$\langle \operatorname{gcd}(f_1, \dots, f_n) \rangle = \langle f_1, \dots, f_n \rangle.$$

(b) For n > 2 the identity

$$gcd(f_1, f_2, \dots, f_n) = gcd(f_1, gcd(f_2, \dots, f_n))$$

holds. This shows that we can compute the GCD of finitely many polynomials with the (two-input) algorithm GCD_EUCLID.

¹Recall that ideals *I*, *J* of the ring *R* are comaximal if I + J = R.

²Cf. Definition 2.1.1 in the lecture notes.

11. Exercise

Let *I* be an integral domain and consider polynomials $a, b \in I[x]$ such that $b \neq 0$ and $m = \deg(a) \ge \deg(b) = n$. Show that there are uniquely defined polynomials $q, r \in I[x]$ such that $\operatorname{lc}(b)^{m-n+1} a = q \cdot b + r$ and either r = 0 or $\operatorname{deg}(r) < \operatorname{deg}(b)$.

12. Exercise

Let $m_1, ..., m_n \in \mathbb{Z}$ be pairwise relatively prime integers and $n \in \mathbb{Z}^+$.

(a) Let $a_1, ..., a_n \in \mathbb{Z}$. Show with the Chinese remainder theorem that there exists a solution $x \in \mathbb{Z}$ of the simultaneous congruences

$$x \equiv a_1 \mod m_1$$

$$\vdots$$

$$x \equiv a_n \mod m_n$$

such that x is unique modulo $\prod_{i=1}^{n} m_i$.

(b) Solve the following Chinese remainder problem, i.e. find a solution $x \in \mathbb{Z}$ of the system of simultaneous congruences

```
x \equiv 62 \mod 79x \equiv 66 \mod 83x \equiv 72 \mod 89.
```

13. Exercise

Consider the polynomials

$$f = x^7 - 3x^5 - 2x^4 + 13x^3 - 15x^2 + 7x - 1$$

$$g = x^6 - 9x^5 + 18x^4 - 13x^3 + 2x^2 + 2x - 1.$$

Compute h = gcd(f, g) in $\mathbb{Z}[x]$ using the modular algorithm. Verify whether the integer factors of the resultant of f/h and g/h are unlucky primes in the modular approach to GCD computation.

14. Exercise

Let *U* be a unique factorization domain (UFD). Show that the polynomial ring U[x] is a UFD as well. Can we conclude that the multivariate polynomial ring $K[x_1, ..., x_n]$ is a UFD, where *K* is a field and $n \in \mathbb{Z}^+$?