Due date: 13.10.2020

The exercises are meant as an invitation to become acquainted with a computer algebra system (CAS) of your choice. Exercise sheets contain problems which have to be solved on a computer from time to time. Furthermore, the project will contain explicit programming tasks so it is a good idea to familiarize yourself with a CAS early on.

The following selection lists some of the most popular and user-friendly systems.

1. Wolfram Mathematica (https://www.wolfram.com/mathematica/)
2. Maple (https://www.maplesoft.com/products/maple/)
3. SageMath (https://www.sagemath.org/): Downloadable for free at http://www. sagemath.org/download.html

1. Exercise

Given the matrix

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 3 & 4
\end{array}\right]
$$

Compute all solutions of the linear system $A \cdot\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{T}=[1,2,3,4,5]^{T}$ with the aid of a CAS.

2. Exercise

Consider the polynomial $f=x^{5}-x^{4}+x^{3}-x^{2}+x-2$. Use a CAS to perform the following tasks:

1. Compute the roots of f numerically. You have influence on floating point precision if you want to.
2. Generate an image of the graph of the polynomial function $F:[a, b] \rightarrow \mathbb{R}, x \mapsto f(x)$. Choose the boundaries a and b of the interval in such a way that you can "see" the real roots of f.
3. Compute the roots of f symbolically. What output does your CAS generate?
4. Compute the roots of the polynomial $g=2 x^{2}+2 x^{3}+2 x^{4}+x^{5}-x^{6}+3 x+1$.

3. Exercise

Use a CAS to compute greatest common divisors (GCDs) in different domains.

1. Compute the integer GCD of the numbers $a=215712$ and $b=739914$. Is the number 48510 contained in the ideal generated by a and b ?
2. Compute the polynomial GCD in $\mathbb{Q}[x]$ of $f=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9$ and $g=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2$. Is the ideal generated by f and g the whole ring $\mathbb{Q}[x]$?

Hint: Both ideals are generated by the corresponding GCDs.

4. Exercise

Find a rational parametrization of the unit circle $x^{2}+y^{2}=1$.

