Due date: 13.10.2020

The exercises are meant as an invitation to become acquainted with a computer algebra system (CAS) of your choice. Exercise sheets contain problems which have to be solved on a computer from time to time. Furthermore, the project will contain explicit programming tasks so it is a good idea to familiarize yourself with a CAS early on.

The following selection lists some of the most popular and user-friendly systems.

- 1. Wolfram Mathematica (https://www.wolfram.com/mathematica/)
- 2. Maple(https://www.maplesoft.com/products/maple/)
- 3. SageMath (https://www.sagemath.org/): Downloadable for free at http://www.sagemath.org/download.html

1. Exercise

Given the matrix

	[1	2	3	4	5]	
	2	2 3 0 0	4	5	1	
<i>A</i> =	0	0	0	1	2	
	0	0	0	2	3	
	0	0	0	3	4	

Compute all solutions of the linear system $A \cdot [x_1, x_2, x_3, x_4, x_5]^T = [1, 2, 3, 4, 5]^T$ with the aid of a CAS.

2. Exercise

Consider the polynomial $f = x^5 - x^4 + x^3 - x^2 + x - 2$. Use a CAS to perform the following tasks:

- 1. Compute the roots of *f* numerically. You have influence on floating point precision if you want to.
- 2. Generate an image of the graph of the polynomial function $F : [a, b] \to \mathbb{R}, x \mapsto f(x)$. Choose the boundaries *a* and *b* of the interval in such a way that you can "see" the real roots of *f*.
- 3. Compute the roots of f symbolically. What output does your CAS generate?
- 4. Compute the roots of the polynomial $g = 2x^2 + 2x^3 + 2x^4 + x^5 x^6 + 3x + 1$.

3. Exercise

Use a CAS to compute greatest common divisors (GCDs) in different domains.

- 1. Compute the integer GCD of the numbers a = 215712 and b = 739914. Is the number 48510 contained in the ideal generated by *a* and *b*?
- 2. Compute the polynomial GCD in $\mathbb{Q}[x]$ of $f = 6x^5 + 2x^4 19x^3 6x^2 + 15x + 9$ and $g = 5x^4 4x^3 + 2x^2 2x 2$. Is the ideal generated by f and g the whole ring $\mathbb{Q}[x]$?

Hint: Both ideals are generated by the corresponding GCDs.

4. Exercise

Find a rational parametrization of the unit circle $x^2 + y^2 = 1$.