
Computer Algebra, F. Winkler, WS 2019/20

Chapter 6

Appendix: Arithmetic in basic domains

References in this chapter refer to references in [Win96].

6.1 Integers

For the purposes of exact algebraic computation integers have to be represented ex-
actly. In practice, of course the size of the machine memory bounds the integers that can
be represented. But it is certainly not acceptable to be limited by the word length of the
machine, say 232.

Definition 6.1.1. Let β ≥ 2 be a natural number. A β–digit is an integer b in the range
−β < b < β. Every positive integer a can be written uniquely as a =

∑n−1
i=0 aiβ

i for
some n ∈ N, a0, . . . , an−1 nonnegative β–digits and an−1 > 0. In the positional number

system with basis (or radix) β the number a is represented by the uniquely determined
list a(β) = [+, a0, . . . , an−1]. In an analogous way a negative integer a is represented

by a(β) = [−, a0, . . . , an−1], where a =
∑n−1

i=0 (−ai)β
i, n ∈ N, a0, . . . , an−1 nonnegative

β–digits and an−1 > 0. The number 0 is represented by the empty list [].

If the integer a is represented by the list [±, a0, . . . , an−1], then Lβ(a) := n is the length of

a w.r.t. β. Lβ(0) := 0. ⊔⊓
So, for example, in the positional number system with basis 1000, the integer

2000014720401 is represented by the list [+, 401, 1472, 0, 2]. By representing integers as
lists, we can exactly represent integers of arbitrary size. The memory needed can be al-
located dynamically, “as the need arises”. For all practical purposes we will chose β such
that a β–digit can be stored in a single machine word.

In measuring the complexity of arithmetic operations on integers we will often give
the complexity functions as functions of Lβ , the length of the integer arguments of the
operations w.r.t. to the basis β of the number system. It is crucial to note that for two
different radices β and γ the associated length functions are proportional. So we will often
speak of the length of an integer without referring to a specific radix. You will prove the
following lemma in the exercises.

Lemma 6.1.1. Let β and γ be two radices for positional number systems in Z.

(a) Lβ(a) = ⌊logβ(| a |)⌋+ 1 for a 6= 0.

(b) Lβ ∼ Lγ .

For future reference we note that obviously the algorithm INT SIGN for computing
the sign ±1 or 0 of an integer a takes constant time. So signs do not present a problem in
integer arithmetic, and we will omit their computation in subsequent algorithms.

79

In fact, we could omit the sign bit in the representation of integers, and instead use
non-positive digits for representing negative numbers. This, of course, means that we need
a new algorithm for determining the sign of an integer. Such an algorithm is developed
in the exercises and in fact one can prove that this determination of the sign, although in
the worst case proportional to the length of the integer, in average is only proportional to
a constant.

Now we describe the arithmetic operations in Z. Throughout this section we assume
that the inputs to algorithms are given in the positional number system with radix β, for
some fixed β, and also the outputs are to be computed in this number system. Furthermore,
in the complexity analyses we will refer to the partition {Zn}n∈N of Z, where Zn = {a ∈
Z | Lβ(a) = n}.

Addition

The “classical” addition algorithm INT SUMC considers both inputs a and b as num-
bers of equal length and adds corresponding digits with carry until both inputs are ex-
hausted. So tINT SUMC(m,n) ∼ max(m,n), where m and n are the lengths of the inputs.
A closer analysis, however, reveals that after the shorter input is exhausted the carry has
to be propagated only as long as the corresponding digits of the longer input are β − 1 or
−β + 1, respectively. This fact is used for constructing a more efficient algorithm, whose
computing time depends only linearly on the length of the shorter of the two summands.
We assume that an algorithm DIGIT SUM is available, which adds the contents of two
machine words, i.e. two β–digits a, b, yielding a digit c and a digit d ∈ {−1, 0, 1}, such
that (a+ b)(β) = [c, d]. Obviously the complexity function of DIGIT SUM is constant.

First let us assume that the two integers to be added have the same sign.

algorithm INT SUM1(in: a, b; out: c);
[a, b are integers, sign(a) = sign(b); c = a+ b]
(1) [initialization] c := []; e := 0 ; a′ := a; b′ := b;
(2) [while a′ and b′ are not exhausted, add successive digits of a′ and b′]

while a′ 6= [] and b′ 6= [] do
{d1 := FIRST(a′); a′ := REST(a′); d2 := FIRST(b′); b′ := REST(b′);
(d, f) := DIGIT SUM(d1, d2);
if f 6= 0
then (d, f ′) := DIGIT SUM(d, e)
else (d, f) := DIGIT SUM(d, e); c := CONS(d, c); e := f};

(3) [the carry is propagated, until it disappears or both numbers are exhausted]
if a′ = [] then g := b′ else g := a′;
while e 6= 0 and g 6= [] do

{d1 := FIRST(g); g := REST(g);
(d, e) := DIGIT SUM(d1, e); c := CONS(d, c)};

(4) if e = 0
then {c := INV(c); c := APPEND(c, g)}
else {c := CONS(e, c); c := INV(c)};
return ⊔⊓

80

Lemma 6.1.2. For a, b ∈ Z with sign(a) = sign(b), INT SUM1 correctly computes a+ b.

Proof: We only consider the case a, b > 0. For a = b = 0 the correctness is obvious, and
for a, b < 0 the correctness can be proved analogously. Let m = Lβ(a), n = Lβ(b), w.l.o.g.
m ≤ n. After the while loop in step (2) has been executed i times, 0 ≤ i ≤ m, we have

a+ b = INV(c) + βi · e+ βi · (a′ + b′).

So when step (2) is finished,

a+ b = INV(c) + βm · e+ βm · b′.

After the while loop in step (3) has been executed j times, 0 ≤ j ≤ n−m, we have

a+ b = INV(c) + βm+j · e+ βm+j · b′.

When the carry e becomes 0 we only need to combine INV(c) and b′. Otherwise b′ = []
after n−m iterations and we only need to add e as the highest digit to the result. ⊔⊓
Theorem 6.1.3. The maximum, minimum, and average complexity functions of
INT SUM1 are proportional to max(m,n),min(m,n), and min(m,n), respectively, where
m and n are the β–lengths of the inputs.

Proof: The maximum and minimum complexity functions for INT SUM1 are obvious. So
let us consider the average complexity.

Let a, b be the inputs of INT SUM1, and let m = L(a), n = L(b). Obviously the
complexity of steps (1), (2) is proportional to min(m,n). We will show that the average
complexity function of step (3) is constant. This will imply that the length of c in step (4)
will be proportional to min(m,n), and therefore also the average complexity of this step
is proportional to min(m,n).

W.l.o.g. assume that the inputs are positive and that m < n. Let k = n −m. If β is
the radix of the number system, then there are (β − 1)βk−1 possible assignments for the
k highest digits of b. The carry has to be propagated exactly up to position m + i of b
for i < k, if the digits in positions m + 1, . . . , m + i − 1 of b all are β − 1 and the digit
in position m + i is less than β − 1. So there are (β − 1)2βk−i−1 possible assignments of
the digits in positions m + 1, . . . , m + k of b, for which exactly i iterations through step
(3) are required. There are β − 2 assignments for which the carry is propagated exactly
up to position m+ k, and for one assignment the propagation is up to position m+ k+1.
Summation over the total time for all these assignments yields

k−1∑

i=1

i · (β − 1)2βk−i−1 + k · (β − 2) + (k + 1) · 1 = (βk − βk + k − 1) + βk − k + 1 = βk.

So the average complexity for step (3) is

βk

(β − 1)βk−1
=

β

β − 1
≤ 2,

i.e. it is contant. ⊔⊓

81

By similar considerations one can develop an algorithm INT SUM2 for adding two
nonzero integers with opposite signs in maximum, minumum, and average time propor-
tional to the maximum, minimum, and minimum of the lengths of the inputs, respectively
(see Exercises). The combination of these two algorithms leads to an addition algorithm
INT SUM for adding two arbitrary integers. This proves the following theorem.

Theorem 6.1.4. There is an addition algorithm INT SUM for integers with maximum,
minimum, and average complexity functions proportional to max(m,n),min(m,n), and
min(m,n), respectively, where m and n are the β–lengths of the inputs.

The algorithm INT NEG for computing the additive inverse −a of an integer a is
obviously of constant complexity. The difference a − b of two integers a and b can be
computed as INT SUM(a, INT NEG(b)). So the algorithm INT DIFF for computing the
difference of two integers has the same complexity behaviour as INT SUM. The algorithm
INT ABS for computing the absolute value of an integer is either of constant complexity
or proportional to the length of the input, depending on which representation of integers
we use.

Multiplication

Now we approach the question of how fast we can multiply two integers. Here we
can give only a first answer. We will come back to this question later. The “classical”
multiplication algorithm INT MULTC proceeds by multiplying every digit of the first
input by every digit of the second input and adding the results after appropriate shifts.
The complexity of INT MULTC is proportional to the product of the lengths of the two
inputs, and if the inputs are of the same length n, then the complexity of INT MULTC is
proportional to n2.

A faster multiplication algorithm has been discovered in 1962 by A. Karatsuba and
Yu. Ofman [Karatsuba,Ofman 62]. The basic idea in the Karatsuba algorithm is to cut
the two inputs x, y of length ≤ n into pieces of length ≤ n/2 such that

x = a · βn/2 + b, y = c · βn/2 + d. (6.1.1)

A usual divide–and–conquer approach would reduce the product of two integers of length
n to four products of integers of length n/2. The complexity of this algorithm would
still be quadratic in n. Karatsuba and Ofman, however, noticed that one of the three
multiplications can be dispensed with.

x · y = acβn + (ad+ bc)βn/2 + bd

= acβn + ((a+ b)(c+ d)− ac− bd)βn/2 + bd.
(6.1.2)

So three multiplications of integers of length n/2 and a few shifts and additions are sufficient
for computing the product x · y.

82

algorithm INT MULTK(in: x, y; out: z);
[x, y integers; z = x · y]
n := max(LENGTH(x),LENGTH(y));
if n = 1 then {z := INT MULTC(x, y) ; return};
if n is odd then n := n+ 1;
(a, b) := (DEL(n/2, x), INIT(n/2, x);
(c, d) := (DEL(n/2, y), INIT(n/2, y);
u := INT MULTK(a+ b, c+ d);
v := INT MULTK(a, c);
w := INT MULTK(b, d);
z := vβn + (u− v − w)βn/2 + w;
return ⊔⊓

Theorem 6.1.5. The complexity of the Karatsuba algorithm INT MULTK is proportional
to nlog2 3, where n is the length of the inputs.

Proof: Initially we assume that n is a power of 2. Let x and y be integers of length not
exceeding n, and let a, b, c, d be the parts of x, y as in (6.1.1). During the execution of the
Karatsuba algorithm we have to compute the products (a+ b)(c+ d), ac, bd. All the other
operations are additions and shifts, which take time proportional to n. The factors in ac
and bd are of length not exceeding n/2, whereas the factors in (a+ b)(c+ d) might be of
length n/2 + 1. We write the factors as

a+ b = a1β
n/2 + b1, c+ d = c1β

n/2 + d1, (6.1.3)

where a1 and c1 are the leading digits of a+ b and c+ d, respectively. Now

(a+ b)(c+ d) = a1c1β
n + (a1d1 + b1c1)β

n/2 + b1d1. (6.1.4)

In the product b1d1 the factors are of length not exceeding n/2. All the other operations
are multiplications by a single digit or shifts, and together their complexity is proportional
to n.

So if we denote the time for multiplying two integers of length n by M(n), we get the
recursion equation

M(n) =

{
k for n = 1
3M(n/2) + kn for n > 1.

(6.1.5)

Here we have taken k to be a bound for the complexity of multiplication of digits as
well as for the constant factor in the linear complexity functions of the addition and shift
operations. The solution to (6.1.5) is

M(n) = 3knlog2 3 − 2kn, (6.1.6)

which can easily be verified by induction. This proves the assertion for all n which are
powers of 2.

Finally let us consider the general case, where n is an arbitrary positive integer. In this
case we could, theoretically, increase the length of the inputs to the next higher power of 2

83

by adding leading zeros. The length of the multiplicands is at most doubled in this process.
In the asymptotic complexity, however, the factor 2 is negligible, since (2n)log2 3 ∼ nlog2 3.
⊔⊓

The Karatsuba algorithm is practically used in computer algebra systems. In fact,
the idea of Karatsuba and Ofman can be generalized to yield a multiplication algorithm of
complexity n1+ǫ for any positive real ǫ. We do not go into details here, but rather refer to
the excellent exposition in [Knuth 81], Section 4.3.3. There is even a faster method based
on the fast Fourier transform and ideas by Schönhage and Strassen [Schönhage,Strassen
71]. The complexity of this multiplication algorithm is proportional to n logn log log n.
For this faster method, however, the overhead is so enormous, that a practical importance
seems very unlikely.

That the complexity of multiplication depends mainly on the smaller of the two inputs
is explained by the following theorem.

Theorem 6.1.6. Let IM be a multiplication algorithm for integers with complexity t+IM(m)
for multiplying two integers of lengths not greater than m, such that m � t+IM(m). Then
there exists a multiplication algorithm IM’ with

t+IM′(m,n) �
{

(m/n) · t+IM(n) for m ≥ n
(n/m) · t+IM(m) for m < n

,

for inputs of lengths m and n, respectively.

Proof: Let a, b be the integers to be multiplied, and m = L(a), n = L(b). W.l.o.g. assume
that m ≥ n. IM’ decomposes a into pieces a0, . . . , al−1 of length ≤ n, such that a =
∑l−1

i=0 ai · βni. The number of pieces can be chosen as l = ⌈m/n⌉ ≤ (m/n) + 1. Now each
piece ai is multiplied by b by algorithm IM and finally these partial results are shifted and
added. Thus for some positive constant c

t+IM′(m,n) ≤ (
m

n
+ 1) · t+IM(n) + (

m

n
+ 1) · cn � (m/n) · t+IM(n),

which completes the proof. ⊔⊓
Division

The problem of integer division consists of computing the uniquely determined integers
q = quot(a, b) and r = rem(a, b) for a, b ∈ Z, b 6= 0, such that

a = q · b+ r and

{
0 ≤ r <| b | for a ≥ 0
− | b |< r ≤ 0 for a < 0

.

If | a |< βj | b | for j ∈ N, then q has at most j digits. j will be approximately L(a) −
L(b) + 1. For determining the highest digit in the quotient one certainly does not need
more than linear time in L(b), even if all the possible digits are tried. So we get

Theorem 6.1.7 There is an algorithm INT DIV for computing the quotient and remainder
of two integers a, b of lengths m,n, respectively, m ≥ n, in time t+INT DIV(m,n) ∼ n · (m−
n+ 1).

In fact we need not really try all the possible digits of the quotient, but there is
a very efficient algorithmic way of “guessing” the highest digit. Such a method has

84

been described in [Pope,Stein 60], where the following theorem is proved. See also
[Collins,Mignotte,Winkler 83].

Theorem 6.1.8 Let a(β) = [+, a0, a1, . . . , am−1], b(β) = [+, b0, . . . , bn−1], β
jb ≤ a < βj+1b

for j ∈ N, m ≥ n and bn−1 ≥ ⌊β/2⌋. If q̄ is maximal in Z with q̄βjb ≤ a and q∗ =
⌊(an+jβ + an+j−1)/bn−1⌋ (we set ai = 0 for i ≥ L(a)), then q̄ ≤ q∗ ≤ q̄ + 2.

By a successive application of Theorem 6.1.8 the digits in the quotient q of a and
b can be computed. Let m = L(a), n = L(b), 0 ≤ a, 0 < b, and bn−1 ≥ ⌊β/2⌋. Then
a < βm−n+1b, so q has at most m−n+1 digits. First the hightest digit qm−n is determined
from the guess q∗. We need at most 2 correction steps of subtracting 1 from the initial
guess. Collins and Musser have shown that the probabilities of q∗ in Theorem 6.1.8 being
q̄ + i for i = 0, 1, 2 are 0.67, 0.32, and 0.01, respectively. Now a − βm−nqm−nb < βm−nb
and the process can be continued to yield qm−n−1 and so on.

The condition bn−1 ≥ ⌊β/2⌋ can be satisfied by replacing a and b by a′ = a · d,
b′ = b · d, respectively, where d = ⌊β/(bn−1 +1)⌋. This does not change the quotient q and
rem(a, b) = (a′ − q · b′)/d.

These considerations lead to a better division algorithm INT DIV, the Pope–Stein

algorithm. The theoretical complexity function of the Pope–Stein algorithm, however, is
still n(m− n+ 1), as in Theorem 6.1.7.

In [Aho,Hopcroft,Ullman 74] the relation in complexity of integer multiplication, divi-
sion, and some other operations is investigated. It is shown that the complexity functions
for multiplication of integers of length ≤ n and division of integers of length ≤ 2n by
integers of length ≤ n are proportional.

Conversion

We assume that we have the arithmetic operations for integers in β–representation
available. There are two types of conversions that we need to investigate: (1) conversion
of an integer a from γ–representation into β–representation, and (2) conversion of a from
β–representation into γ–representation.

It is quite obvious how we can do arithmetic with radix βj , if we can do arithmetic
with radix β. So in conversion problem (1) we may assume that γ < β, i.e. γ is a β–digit.
If a(γ) = [a0, . . . , an−1], then we get a(β) by Horner’s rule

a = (· · · ((an−1γ + an−2)γ + an−3)γ + · · ·+ a1)γ + a0.

Every multiplication by γ takes time linear in the length of the multiplicand, and every
addition of a digit ai takes constant time. So the maximum complexity of conversion of
type (1) is proportional to

n−1∑

i=1

i ∼ n2 = Lγ(a)
2.

Conversion problem (2) can be solved by successive division by γ = γ(β). Every such
division step reduces the length of the input by a constant, and takes time proportional to
the length of the intermediate result, i.e. the maximum complexity of conversion of type
(2) is proportional to Lβ(a)

2.

85

Computation of greatest common divisors

Z is a unique factorization domain. So for any two integers x, y which are not both
equal to 0, there is a greatest common divisor (gcd) g of x and y. g is determined up to
multiplication by units, i.e. up to sign. Usually we mean the positive greatest common
divisor when we speak of “the greatest common divisor”. For the sake of completeness let
us define gcd(0, 0) := 0.

But in addition to mere existence of gcds in Z, there is also a very efficient algorithm
due to Euclid (≈ 330 – 275 B.C.) for computing the gcd. This is probably the oldest
full fledged nontrivial algorithm in the history of mathematics. In later chapters we will
provide an extension of the scope of Euclid’s algorithm to its proper algebraic setting. But
for the time being, we are just concerned with integers.

Suppose we want to compute gcd(x, y) for x, y ∈ N, y 6= 0. We divide x by y, i.e. we
determine the quotient q and the remainder r of x divided by y, such that

x = q · y + r, with r < y.

Now gcd(x, y) = gcd(y, r), i.e. the size of the problem has been reduced. This process is
repeated as long as r 6= 0. Thus we get the so–called Euclidean remainder sequence

r1, r2, . . . , rn, rn+1,

with r1 = x, r2 = y, ri = rem(ri−2, ri−1) for n + 1 ≥ i ≥ 3 and rn+1 = 0. Clearly
gcd(x, y) = rn. Associated with this remainder sequence we get a sequence of quotients

q1, . . . , qn−1,

such that

ri = qi · ri+1 + ri+2 for 1 ≤ i ≤ n− 1.

Thus in Z greatest common divisors can be computed by the Euclidean algorithm

INT GCDE.

algorithm INT GCDE(in: x, y; out: g);
[x, y are integers; g = gcd(x, y)]
(1) r′ := INT ABS(x); r′′ := INT ABS(y);
(2) while r′′ 6= 0 do

{(q, r) := INT DIV(r′, r′′);
r′ := r′′; r′′ := r};

(3) g := r′;
return ⊔⊓

The computation of gcds of integers is an extremely frequent operation in any com-
putation in computer algebra. So we carefully have to analyze its complexity. G. Lamé
proved already in the 19th century that for positive inputs bounded by n the number of
division steps in the Euclidean algorithm is at most ⌈logφ(

√
5n)⌉−2, where φ = 1

2
(1+

√
5).

See [Knuth 81], Section 4.5.3.

86

Theorem 6.1.9. Let l1, l2 be the lengths of the inputs x, y of INT GCDE, and let k be
the length of the output. Then t+INT GCDE(l1, l2, k) ∼ min(l1, l2) · (max(l1, l2)− k + 1).

Proof: Steps (1) and (3) take constant time. So it remains to investigate the complexity
behaviour of step (2), t+2 (l1, l2, k).

Let r1, r2, . . . , rn+1 be the remainder sequence and q1, . . . , qn−1 the quotient sequence
computed by INT GCDE for the inputs x, y. If | x |<| y | then the first iteration through
the loop in (2) results in a reversal of the input pair. In this case the first iteration
through the loop takes time proportional to min(l1, l2). So in the sequel we assume that
| x |≥| y |> 0. By Theorem 6.1.7

t+2 (l1, l2, k) �
n−1∑

i=1

L(qi)L(ri+1) ≤ L(r2) · (
n−2∑

i=1

L(qi + 1) + L(qn−1)). (6.1.7)

qi ≥ 1 for 1 ≤ i ≤ n− 2 and qn−1 ≥ 2. So by Exercise 2.1.5 in [Win96]

n−2∑

i=1

L(qi + 1) + L(qn−1) ∼ L(qn−1 ·
n−2∏

i=1

(qi + 1)). (6.1.8)

For 1 ≤ i ≤ n− 2 we have ri+2(qi +1) < ri+1qi + ri+2 = ri, and therefore qi +1 < ri/ri+2.
Furthermore qn−1 = rn−1/rn. Thus

qn−1 ·
n−2∏

i=1

(qi + 1) <
rn−1 · r1 · r2
rn · rn−1 · rn

≤
(
r1
rn

)2

. (6.1.9)

Joining (6.1.7), (6.1.8), and (6.1.9) we finally arrive at

t+2 (l1, l2, k) � min(l1, l2) · L(
(
r1
rn

)2

) ∼ min(l1, l2) · (max(l1, l2)− k + 1).

So t+INT GCDE(l1, l2, k) � min(l1, l2) · (max(l1, l2)− k + 1).
From this it is easily shown that t+INT GCDE(l1, l2, k) ∼ min(l1, l2) · (max(l1, l2)− k+ 1). ⊔⊓

The greatest common divisor g of x and y generates ideal(x, y) in Z. So in particular
g can be written as a linear combination of x and y,

g = u · x+ v · y.

These linear coefficients can be computed by a straighforward extension of INT GCDE,
the extended Euclidean algorithm INT GCDEE. Throughout the algorithm INT GCDEE
the invariant

r′ = u′ · x+ v′ · y and r′′ = u′′ · x+ v′′ · y

is preserved.

87

algorithm INT GCDEE(in: x, y; out: g, u, v);
[x, y are integers; g = gcd(x, y) = u · x+ v · y]
(1) (r′, u′, v′) := (INT ABS(x), INT SIGN(x),0);

(r′′, u′′, v′′) := (INT ABS(y), 0, INT SIGN(x));
(2) while r′′ 6= 0 do

{q := INT QUOT(r′, r′′);
(r, u, v) := (r′, u′, v′)− q · (r′′, u′′, v′′);
(r′, u′, v′) := (r′′, u′′, v′′);
(r′′, u′′, v′′) := (r, u, v); }

(3) (g, u, v) := (r′, u′, v′);
return ⊔⊓

88

6.2 Polynomials

Before we can design algorithms on polynomials, we need to introduce some notation
and suitable representations.

Representations
A representation of polynomials can be either recursive or distributive, and it can be

either dense or sparse. Thus, there are four basically different representations of multivari-
ate polynomials.

In a recursive representation a nonzero polynomial p(x1, . . . , xn) is viewed as an ele-
ment of (R[x1, . . . , xn−1])[xn], i.e. as a univariate polynomial in the main variable xn,

p(x1, . . . , xn) =

m∑

i=0

pi(x1, . . . , xn−1)x
i
n, with pm 6= 0.

In the dense recursive representation p is represented as the list

p(dr) = [(pm)(dr), . . . , (p0)(dr)],

where (pi)(dr) is in turn the dense representation of the coefficient pi(x1, . . . , xn−1). If
n = 1 then the coefficients pi are elements of the ground ring R and are represented as
such. The dense representation makes sense if many coeffients are different from zero. On
the other hand, if the set of support of a polynomial is sparse, then a sparse recursive
representation is better suited, i.e.

p(x1, . . . , xn) =

k∑

i=0

pi(x1, . . . , xn−1)x
ei
n , e0 > · · · > ek and pi 6= 0 for 1 ≤ i ≤ k,

is represented as the list

p(sr) = [e1, (p1)(sr), . . . , ek, (pk)(sr)].

In a distributive representation a nonzero polynomial p(x1, . . . , xn) is viewed as an
element of R[x1, . . . , xn], i.e. a function from the set of power products in x1, . . . , xn into
R. In a dense distributive representation we need a bijection e : N −→ N

n. A polynomial

p(x1, . . . , xn) =

r∑

i=0

aix
e(i), with ar 6= 0

is represented as the list
p(dd) = [ar, . . . , a0].

A sparse representation of

p(x1, . . . , xn) =
s∑

i=0

aix
e(ji), with ai 6= 0 for 1 ≤ i ≤ s

89

is the list
p(sd) = [e(j0), a0, . . . , e(js), as].

Which representation is actually employed depends of course on the algorithms that
are to be applied. In later chapters we will see examples for algorithms that depend
crucially on a recursive representation and also for algorithms that need a distributive
representation. However, only very rarely will there be a need for dense representations
in computer algebra. If the set of support of multivariate polynomials is dense, then the
number of terms even in polynomials of modest degree is so big, that in all likelyhood no
computations are possible any more.

In the sequel we will mainly analyze the complexity of operations on polynomials
in recursive representation. So if not explicitly stated otherwise, the representation of
polynomials is assumed to be recursive.

Addition and subtraction
The algorithms for addition and subtraction of polynomials are obvious: the coeffi-

cients of like powers have to be added or subtracted, respectively. If p and q are n–variate
polynomials in dense representation, with max(degxi

(p), degxi
(q)) ≤ d for 1 ≤ i ≤ n, then

the complexity of adding p and q is dominated by A(p, q) · (d + 1)n, where A(p, q) is the
maximal time needed for adding two coefficients of p and q in the ground ring R. If p and
q are in sparse representation, and t is a bound for the number of terms xm

i with nonzero
coefficient in p and q, for 1 ≤ i ≤ n, then the complexity of adding p and q is dominated
by A(p, q) · tn.
Multiplication

In the classical method for multiplying polynomials p(x) =
∑m

i=0 pix
i and q(x) =

∑n
j=0 qjx

j the formula

p(x) · q(x) =
m+n∑

l=0

(∑

i+j=l

pi · qj
)

xl

is employed. If p and q are n–variate polynomials in dense representation with d as above,
then the complexity of multiplying p and q is dominated by M(p, q) · (d + 1)2n, where
M(p, q) is the maximal time needed for multiplying two coefficients of p and q in the
ground ring R. Observe that (d + 1)n is a good measure of the size of the polynomials,
when the size of the coefficients is neglected.

As for integer multiplication one can apply the Karatsuba method. I.e. the multipli-
cands p and q are decomposed as

p(x) = p1(x) · x[d/2] + p0(x), q(x) = q1(x) · x[d/2] + q0(x),

and the product is computed as

p(x) · q(x) = p1 · q1 · x2[d/2] +
(
(p1 + p0) · (q1 + q0)− p1 · q1 − p0 · q0

)
· x[d/2] + p0 · q0.

Neglecting the complexity of operations on elements of the ground ring R, we get (d +
1)n log2 3 as a dominating function for the complexity of mulitplying p and q.

For multiplying the sparsely represented polynomials p(x) =
∑t

i=1 pix
ei and q(x) =

∑t
j=1 qjx

fi , one basically has to (1) compute p · qjxfj for j = 1, . . . , t, and (2) add this to

90

the already computed partial result, which has roughly (i−1)t terms, if t ≪ deg(q), deg(q).
So the overall time complexity of multiplying polynomials in sparse representation is

t∑

i=1

(
M(p, q) · t
︸ ︷︷ ︸

(1)

+(i− 1)t
︸ ︷︷ ︸

(2)

)
∼ M(p, q) · t3.

Division
First let us assume that we are dealing with univariate polynomials over a field K.

If b(x) is a nonzero polynomial in K[x], then every other polynomial a(x) ∈ K[x] can
be divided by b(x) in the sense that one can compute a quotient q(x) = quot(a, b) and a
remainder r(x) = rem(a, b) such that

a(x) = q(x) · b(x) + r(x) and (r(x) = 0 or deg(r) < deg(b)). (6.2.1)

The quotient q and remainder r in (6.2.1) are unique. The algorithm POL DIVK computes
the quotient and remainder for densely represented polynomials. It can easily be modified
for sparsely represented polynomials.

algorithm POL DIVK(in: a, b; out: q, r);
[a, b ∈ K[x], b 6= 0; q = quot(a, b), r = rem(a, b). a and b are assumed to be in
dense representation, the results q and r are likewise in dense representation]
(1) q := []; a′ := a; c := lc(b) ; m := deg(a′); n := deg(b);
(2) while m ≥ n do

{d := lc(a′)/c ; q := CONS(d, q) ; a′ := a′ − d · xm−n · b ;

for i = 1 to min{m− deg(a′)− 1, m− n} do q := CONS(0, q) ;

m := deg(a′)} ;

(3) q := INV(q) ; r := a′; return ⊔⊓

Theorem 6.2.1. Let a(x), b(x) ∈ K[x], b 6= 0, m = deg(a), n = deg(b), m ≥ n. The
maximal number of field operations in executing POL DIVK on the inputs a and b is
proportional to n(m− n+ 1).

Proof: The while–loop is executed m − n + 1 times. The number of field operations in
one pass through the loop is proportional to n. ⊔⊓

The case K = Q is of special importance in computer algebra. Assuming that the
length of coefficients, i.e. the lengths of the numerators and the denominators, is bounded
by d, then in the i–th iteration through the loop in POL DIVK the length of the coefficients
of a′ and the length of the new coefficient added to q will be proportional to i · d. So if
the classical multiplication algorithm on the coefficients is used, the complexity of the i–th
iteration is proportional to n · (id) · d. For the overall complexity of POL DIVK over Q we
get

nd2
m−n+1∑

i=1

i ∼ nd2(m− n+ 1)2.

The algorithm POL DIVK is not applicable any more, if the underlying domain of
coefficients is not a field. In this case, the leading coefficient cannot be divided. Important

91

examples of such polynomial rings are Z[x] or multivariate polynomial rings. In fact,
there are no quotient and remainder satisfying equation (6.2.1). However, it is possible to
satisfy (6.2.1) if we allow to normalize the polynomial a by a certain power of the leading
coefficient of b.

Theorem 6.2.2. Let R be an integral domain, a(x), b(x) ∈ R[x], b 6= 0, and m = deg(a) ≥
n = deg(b). There are uniquely defined polynomials q(x), r(x) ∈ R[x] such that

lc(b)m−n+1 · a(x) = q(x) · b(x) + r(x) and (r(x) = 0 or deg(r) < deg(b)). (6.2.2)

Proof: R being an integral domain guarantees that multiplication of a polynomial by a
non-zero constant does not change the degree.

For proving the existence of q and r we proceed by induction on m−n. For m−n = 0
the polynomials q(x) = lc(a), r(x) = lc(b) · a− lc(a) · b obviously satisfy (6.2.2).

Now let m− n > 0. Let

c(x) := lc(b) · a(x)− xm−n · lc(a) · b(x) and m′ := deg(c).

Then m′ < m. For m′ < n we can set q′ := 0, r := lc(b)m−n ·c and we get lc(b)m−n ·c(x) =
q′(x) · b(x) + r(x). For m′ ≥ n we can use the induction hypothesis on c and b, yielding
q1, r1 such that

lc(b)m
′−n+1 · c = q1 · b+ r1 and (r1 = 0 or deg(r1) < deg(b)).

Now we can multiply both sides by lc(b)m−m′−1 and we get

lc(b)m−n · c(x) = q′(x) · b(x) + r(x),where r = 0 or deg(r) < deg(b).

Backsubstitution for c yields (6.2.2).
For establishing the uniqueness of q and r, we assume to the contrary that both q1, r1

and q2, r2 satisfy (6.2.2). Then q1 ·b+r1 = q2 ·b+r2, and (q1−q2) ·b = r2−r1. For q1 6= q2
we would have deg((q1 − q2) · b) ≥ deg(b) > deg(r1 − r2), which is impossible. Therefore
q1 = q2 and consequently also r1 = r2. ⊔⊓

algorithm POL DIVP(in: a, b; out: q, r);
[a, b ∈ R[x], b 6= 0; q = pquot(a, b), r = prem(a, b). a and b are assumed to be in
dense representation, the results q and r are likewise in dense representation]
(1) q := []; a′ := a; c := lc(b) ; m := deg(a′); n := deg(b);
(2) while m ≥ n do

{d := lc(a′) · cm−n ; q := CONS(d, q) ; a′ := c · a′ − lc(a′) · xm−n · b ;

for i = 1 to min{m− deg(a′)− 1, m− n} do

{ q := CONS(0, q) ; a′ := c · a′};
m := deg(a′)} ;

(3) q := INV(q) ; r := a′; return ⊔⊓

Definition 6.2.1. Let R, a(x), b(x), m, n be as in Theorem 6.2.2. Then the uniquely
defined polynomials q(x) and r(x) satisfying (6.2.2) are called the pseudoquotient and the
pseudoremainder, respectively, of a and b. We write q = pquot(a, b), r = prem(a, b). ⊔⊓

92

The algorithm POL DIVP computes the pseudoquotient and pseudoremainder of two
polynomials over an integral domain R.

As we will see later, pseudoremainders can be used in a generalization of Euclid’s
algorithm. The following is an important technical requirement for this generalization.

Lemma 6.2.3. Let R, a(x), b(x), m, n be as in Theorem 6.2.2. Let α, β ∈ R. Then
pquot(α · a, β · b) = βm−n · α · pquot(a, b) and prem(α · a, β · b) = βm−n+1 · α · prem(a, b).

Evaluation
Finally we consider the problem of evaluating polynomials. Let p(x) = pnx

n+· · ·+p0 ∈
R[x] for a ring R and a ∈ R. We want to compute p(a).

Successive computation and addition of p0, p1x, . . . , pnx
n requires 2n − 1 multiplica-

tions and n additions in R. A considerable improvement is obtained by Horner’s rule,
which evaluates p at a according to the scheme

p(a) = (· · · (pn · a+ pn−1) · a+ · · ·) · a+ p0,

requiring nmultiplications and n additions in R. One get’s Horner’s rule from the computa-
tion of rem(p, x−a), by using the relation p(a) = rem(p, x−a). In fact, p(a) = rem(p, f)(a)
for every polynomial f with f(a) = 0. In particular, for f(x) = x2 − a2 one gets the 2nd

order Horner’s rule, which evaluates the polynomial

p(x) =

⌊n/2⌋
∑

j=0

p2jx
2j

︸ ︷︷ ︸

p(even)

+

⌈n/2⌉−1
∑

j=0

p2j+1x
2j+1

︸ ︷︷ ︸

p(odd)

at a as
p(even) = (· · · (p2⌊n/2⌋ · a2 + p2(⌊n/2⌋−1)) · a2 + · · ·) · a2 + p0,

p(odd) = ((· · · (p2⌈n/2⌉−1 · a2 + p2⌈n/2⌉−3) · a2 + · · ·) · a2 + p1) · a.
The second order Horner’s rule requires n + 1 multiplications and n additions in R,

which is no improvement over the 1st order Horner’s rule. However, if both p(a) and p(−a)
are needed, then the second evaluation can be computed by just one more addition.

93

6.3 Quotient fields

Let I be an integral domain and Q(I) its quotient field. The arithmetic operations in
Q(I) can be based on (6.4.7). If I is actually a Euclidean domain, then we can compute
normal forms of quotients by eliminating the gcd of the numerator and the denominator.
We say that r ∈ Q(I) is in lowest terms if numerator and denominator of r are relatively
prime.

The rational numbers Q and the rational functions K(x), for a field K, are important
examples of such domains.

The efficiency of arithmetic depends on a clever choice of when exactly the gcd is elim-
inated in the result. In a classical approach numerators and denominators are computed
according to (6.4.7) and afterwards the result is transformed into lowest terms. P. Henrici
[Henrici 56] has devised the fastest known algorithms for arithmetic in such quotients
fields. The so-called Henrici algorithms for addition and multiplication of r1/r2 and s1/s2
in Q(I) rely on the following facts.

Theorem 6.3.1. Let I be a Euclidean domain, r1, r2, s1, s2 ∈ I, gcd(r1, r2) =
gcd(s1, s2) = 1.
(a) If d = gcd(r2, s2), r

′
2 = r2/d, s

′
2 = s2/d,

then gcd(r1s
′
2 + s1r

′
2, r2s

′
2) = gcd(r1s

′
2 + s1r

′
2, d).

(b) If d1 = gcd(r1, s2), d2 = gcd(s1, r2), r
′
1 = r1/d1, r

′
2 = r2/d2, s

′
1 = s1/d2, s

′
1 = s2/d1,

then gcd(r′1s
′
1, r

′
2s

′
2) = 1.

algorithm QF SUMH(in: r = (r1, r2), s = (s1, s2); out: t = (t1, t2));
[r, s ∈ Q(I) in lowest terms. t is a representation of r + s in lowest terms.]
(1) if r1 = 0 then {t := s; return};

if s1 = 0 then {t := r; return};
(2) d := gcd(r2, s2);
(3) if d = 1

then {t1 := r1s2 + r2s1; t2 := r2s2}
else

{r′2 := r2/d; s
′
2 := s2/d; t

′
1 := r1s

′
2 + s1r

′
2; t

′
2 := r2s

′
2;

if t′1 = 0
then {t1 := 0; t2 := 1}
else {e := gcd(t′1, d);

if e = 1
then {t1 := t′1; t2 := t′2}
else {t1 := t′1/e; t2 := t′2/e} } }

return ⊔⊓

Since the majority of the computing time is spent in extracting the gcd from the
result, the Henrici algorithms derive their advantage from replacing one gcd computation
of large inputs by several gcd computations for smaller inputs.

94

algorithm QF MULTH(in: r = (r1, r2), s = (s1, s2); out: t = (t1, t2));
[r, s ∈ Q(I) in lowest terms. t is a representation of r · s in lowest terms.]
(1) if r1 = 0 or s1 = 0 then {t1 := 0; t2 := 1; return};
(2) d1 := gcd(r1, s2); d2 := gcd(s1, r2);
(3) if d1 = 1

then {r′1 := r1; s
′
2 := s2}

else {r′1 := r1/d1; s
′
2 := s2/d1};

if d2 = 1
then {s′1 := s1; r

′
2 := r2}

else {s′1 := s1/d2; r
′
2 := r2/d2};

(4) t1 := r′1s
′
1; t2 := r′2s

′
2;

return ⊔⊓

Let us compare the complexities of the classical algorithm QF SUMC versus the
Henrici algorithm for addition in Q. We will only take into account the gcd computa-
tions, since they are the most expensive operations in any algorithm.

Suppose r = r1/r2, s = s1/s2 ∈ Q and the numerators and denominators are bounded
by n in length. In QF SUMC we have to compute a gcd of 2 integers of length 2n each. In
QF SUMH we first compute a gcd of 2 integers of length n each, and, if d = gcd(r2, s2) 6= 1
and k = L(d), a gcd of integers of length 2n−k and k, respectively. We will make use of the
complexity function for gcd computation stated in Theorem 6.1.9, i.e. t+INT GCD(l1, l2, k) ∼
min(l1, l2) · (max(l1, l2)− k + 1).

If d = 1, then the computing time for the gcd in QF SUMC is proportional to 4n2,
whereas the gcd in QF SUMH takes time proportional to n2. So QF SUMH is faster than
QF SUMC by a factor of 4.

Now let us assume that d 6= 1, k = n/2, and e = 1. In this case the gcd in QF SUMC is
proportional to 2n(2n−n/2) = 3n2. The times for the gcd computations in QF SUMH are
proportional to n(n − n/2) = n2/2 and (n/2)(3n/2) = 3n2/4. So in this case QF SUMH
is faster than QF SUMC by a factor of 12/5.

The advantage of the Henrici algorithms over the classical ones becomes even more
pronounced with increasing costs of gcd computations, e.g. in multivariate function fields
like Q(x1, . . . , xn) = Q(Q[x1, . . . , xn]).

95

6.4 Algebraic extension fields

Let K be a field and α algebraic over K. Let f(x) ∈ K[x] be the minimal polynomial
of α and m = deg(f). For representing the elements in the algebraic extension field K(α)
of K we use the isomorphism K(α) ∼= K[x]/〈f(x)〉. Every polynomial p(x) can be reduced
modulo f(x) to some q(x) with deg(q) < m. On the other hand, two different polynomials
p(x), q(x) with deg(p), deg(q) < m cannot be congruent modulo f(x), since otherwise p−q,
a non-zero polynomial of degree less than m, would be a multiple of f . Thus, every element
a ∈ K(α) has a unique representation

a = am−1x
m−1 + · · ·+ a1x+ a0

︸ ︷︷ ︸

a(x)

+〈f(x)〉, ai ∈ K.

We call a(x) the normal representation of a, and sometimes we also write a(α).
From this unique normal representation we can immediately deduce that K(α) is a

vector space over K of dimension m and with a basis 1, α, α2, . . . , αm−1.

Consider, for instance, the field Q and let α be a root of x3 − 2. Q(α) = Q[x]/〈x3−2〉

is an algebraic extension field of Q, in which x3 − 2 has a root, namely α, whose normal
representation is x. So Q(α) = Q(3

√
2) can be represented as {a2x2 + a1x+ a0|ai ∈ Q}. In

Q(α) the polynomial x3 − 2 factors into x3 − 2 = (x− α)(x2 + αx+ α2).

Addition and subtraction in K(α) can obviously be carried out by simply adding and
subtracting the normal representations of the arguments. The result is again a normal
representation. Multiplication of normal representations and subsequent reduction (i.e.
remainder computation) by the minimal polynomial f(x) yields the normal representation
of the product of two elements in K(α).

If we assume that the complexity of field operations in K is proportional to 1, then the
complexity for addition and subtraction in K(α) is proportional to m. The complexity of
multiplication is dominated by the complexity of the reduction modulo f(x). A polynomial
of degree < 2m has to be divided by a polynomial of degree m, i.e. the complexity of
multiplication in K(α) is proportional to m2.

If we take into account the increase of coefficients in K, as indeed we must for instance
in Q, we get higher and usually more complicated complexity functions. In Q(α) the
complexity of addition and multiplication turn out to be proportional to md and m3d2,
respectively, where the lengths of coefficients of the operands and the minimal polynomial
are proportional to d.

The inverse a−1 of a ∈ K(α) can be computed by an application of the extended
Euclidean algorithm E EUCLID (see Chapter 3) to the minimal polynomial f(x) and the
normal representation a(x) of a. Since f(x) and a(x) are relatively prime, the extended
Euclidean algorithm yields the gcd 1 and linear factors u(x), v(x) ∈ K[x] such that

u(x)f(x) + v(x)a(x) = 1 and deg(v) < m.

So v(x) is the normal representation of a−1.
If we use the modular gcd algorithm, then the complexity of computing the inverse in

Q(α) is proportional to m3d3.

96

For example, let Q(α) be as above, i.e. α a root of x3−2. Let a, b ∈ Q(α) with normal
representations a(x) = 2x2 − x+ 1 and b(x) = x+ 2, respectively. Then a+ b = 2x2 + 3,
a ·b = rem(2x3+3x2−x+2, x3−2) = 3x2−x+6. For computing a−1 we apply E EUCLID
to x3 − 2 and a(x), getting

1

43
(2x− 19)(x3 − 2) +

1

43
(−x2 + 9x+ 5)a(x) = 1.

So a−1 has the normal representation (−x2 + 9x+ 5)/43.

An algebraic extension K(α) over K with minimal polynomial f(x) is separable if and
only if f(x) has no multiple roots or, in other words, f ′(x) 6= 0. In characteristic 0 every
algebraic extension is separable. Let K(α1) . . . (αn) be a multiple algebraic extension of
K, so αi is the root of an irreducible polynomial fi(x) ∈ K(α1) . . . (αi−1). For every such
multiple separable algebraic field extension there exists an algebraic element γ over K such
that

K(α1) . . . (αn) = K(γ),

i.e. every multiple separable algebraic extension can be rewritten as a simple algebraic
extension. γ is a primitive element of this algebraic extension.

97

6.5 Finite fields

Modular arithmetic in residue class rings
Every integer m generates an ideal 〈m〉 in Z. Two integers a, b are congruent modulo

〈m〉 iff a− b ∈ 〈m〉, or in other words, m|a− b. In this case we write

a ≡ b mod m or a ≡ mod m b.

So obviously a and b are congruent modulo m if and only if they have the same residue
modulom. Since ≡ mod m is an equivalence relation, we get a decomposition of the integers
into eqivalence classes, the residue classes modulo m.

Let us consider the residue classes of integers modulo any positive integer m. In
general, this is not a field, not even an integral domain, but just a commutative ring. This
commutative ring is called the residue class ring modulo m and it is denoted by Z/〈m〉 or
just Z/m. The residue class ring is a field if and only if the modulus m is a prime number.

For the purpose of computation in such a residue class ring we need to choose repre-
sentations of the elements. There are two natural representations for Z/m, namely as the
residue classes corresponding to

{0, 1, . . . , m− 1} (least non− negative representation)

or the residue classes corresponding to

{a ∈ Z| − m

2
< a ≤ m

2
}. (zero− centered representation)

Both representations are useful in specific applications. Of course a change of representa-
tions is trivial.

The canonical homomorphism Hm which maps an integer a to its representation in
Z/m is simply the computation of the remainder of a w.r.t. m. So according to Theorem
6.1.7 it takes time proportional to L(m)(L(a)− L(m) + 1).

Addition +m and multiplication ·m in Z/m are defined as follows on the representatives

a+m b = Hm(a+ b), a ·m b = Hm(a · b).

Using this definition and the bounds of Section 2.1, we see that the obvious algorithms
MI SUM and MI MULT for +m and ·m, respectively, have the complexities t+MI SUM ∼
t∗MI SUM ∼ L(m) and t+MI MULT ∼ L(m)2 +L(m)(2L(m)− L(m) + 1) ∼ L(m)2. So even
if we use faster multiplication methods, the bound for MI MULT does not decrease.

An element a ∈ Z/m has an inverse if and only if gcd(m, a) = 1, otherwise a is a zero-
divisor. So we can decide whether a can be inverted and if so compute a−1 by applying
INT GCDEE to m and a. If a is invertible we will get a linear combination u ·m+v ·a = 1,
and v will be the inverse of a. The time complexity for computing the inverse is bounded
by L(m)2.

An important relation of modular arithmetic is captured in Fermat’s “Little” Theorem.
Theoretically this provides an alternative method for computing inverses modulo primes.

98

Theorem 6.5.1. (Fermat’s Little Theorem) If p is a prime and a is an integer not divisible
by p, then ap−1 ≡ 1 mod p.

Proof: First we proof a more general fact:
(*) In a finite abelian group 〈A, ·, 1〉 with n elements we have an = 1 for all a ∈ A.
Let A = {a1, . . . , an}. For every a ∈ A we have aai = aaj only if ai = aj ; so also
A = {aa1, . . . , aan}. We get

∏n
i=1 ai =

∏n
i=1(aai) = an

∏n
i=1 ai, which implies an = 1.

Now if we consider the multiplicative subgoup of Zp (with p− 1 elements), we get the
theorem. ⊔⊓

Arithmetic in finite fields
Now let us turn to finite fields. As we have seen above, Z/p will be a finite field if

and only if p is a prime number. In general a finite field need not have prime cardinality.
However, every finite field has cardinality pn, for p a prime. On the other hand, for every
prime p and natural number n there exists a unique (up to isomorphism) finite field of
order pn. This field is usually denoted GF (pn), the Galois field of order pn.

From what we have derived in previous sections, it is not difficult to construct and
compute in Galois fields. Let f(x) be an irreducible polynomial of degree n in Zp[x]. We
will see later how to check irreducibility efficently, and in fact for every choice of p and n
there is a corresponding f . Then f determines an algebraic field extension of Z of degree
n, i.e.

GF (pn) ∼= Zp[x]/〈f(x)〉.

So the arithmetic operations can be handled as in any algebraic extension field.

For a thorough introduction to the theory of finite fields we refer to [Lidl,Niederreiter
83], [Lidl,Pilz 84]. Here we list only some facts that will be useful in subsequent chapters.

GF (pn) is the splitting field of xpn − x over Zp, i.e.

xpn − x =
∏

a∈GF (pn)

(x− a).

Every β ∈ GF (pn) is algebraic over Zp. If s is the smallest postitive integer such that

βps

= β, then mβ(x) =
∏s−1

i=0 (x − βpi

) is the minimal polynomial of β over Zp. The
multiplicative group of GF (pn) is cyclic. A generating element of this cyclic group is
called a primitive element of the Galois field.

An important property of Galois fields is the “freshman’s dream”.

Theorem 6.5.2. Let a(x), b(x) ∈ GF (pn)[x]. Then (a(x) + b(x))p = a(x)p + b(x)p.

Proof: In the binomial expansion of the left hand side

p
∑

i=0

(
p

i

)

a(x)ib(x)p−i

all the binomial coefficients except the first and the last are divisible by p and for those
we have

(
p
0

)
= 1 =

(
p
p

)
. ⊔⊓

Corollary Let a(x) ∈ Zp[x]. Then a(x)p = a(xp).

99

Proof: Let a(x) =
∑m

i=0 aix
i. By the theorem and Fermat’s Little Theorem we have

a(x)p =
∑m

i=0(aix
i)p =

∑m
i=0 aix

ip = a(xp). ⊔⊓
Example 6.5.1. Let us carry out some of these constructions in GF (24). The polynomial
f(x) = x4 + x+ 1 is irreducible over Z2, so

GF (24) ∼= Z2[x]/〈x4+x+1〉.

Let α be a root of f . Every β ∈ GF (24) has a unique representation as

β = b0 + b1α + b2α
2 + b3α

3, bi ∈ Z2.

The following is a table of GF (24):

elements β = b0 + b1α+ b2α
2 + b3α

3 of Z2(α), where α4 + α+ 1 = 0

β b0 b1 b2 b3 minimal polynomial of β over Z2

0 0 0 0 0 x
1 1 0 0 0 x+ 1
α 0 1 0 0 x4 + x+ 1
α2 0 0 1 0 x4 + x+ 1
α3 0 0 0 1 x4 + x3 + x2 + x+ 1

1 + α = a4 1 1 0 0 x4 + x+ 1
α + α2 = α5 0 1 1 0 x2 + x+ 1
α2 + α3 = α6 0 0 1 1 x4 + x3 + x2 + x+ 1

1 + α + α3 = α7 1 1 0 1 x4 + x3 + 1
1 + α2 = α8 1 0 1 0 x4 + x+ 1
α + α3 = α9 0 1 0 1 x4 + x3 + x2 + x+ 1

1 + α+ α2 = α10 1 1 1 0 x2 + x+ 1
α+ α2 + α3 = α11 0 1 1 1 x4 + x3 + 1

1 + α+ α2 + α3 = α12 1 1 1 1 x4 + x3 + x2 + x+ 1
1 + α2 + α3 = α13 1 0 1 1 x4 + x3 + 1

1 + α3 = α14 1 0 0 1 x4 + x3 + 1
1 = α15 1 0 0 0 x+ 1

For computing the minimal polynomial mβ(x) for β = α6, we consider the powers β2 =
α12, β4 = α9, β8 = α3, β16 = α6 = β, so

mβ(x) =

3∏

i=0

(x− βpi

) = x4 + x3 + x2 + x+ 1.

Every β ∈ GF (24) is a power of α, so α is a primitive element of GF (24). However,
not every irreducible polynomial has a primitive element as a root. For instance, g(x) =
x4 + x3 + x2 + x+ 1 also is irreducible over Z2[x], so GF (24) = Z2[x]/〈g(x)〉. But β, a root
of g, is not a primitive element of GF (16), since β5 = 1. ⊔⊓

100

