Introduction to Logic Programming
 Foundations, First-Order Language

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University Linz, Austria
kutsia@risc.jku.at

What is a Logic Program

- Logic program is a set of certain formulas of a first-order language.
- In this lecture: syntax and semantics of a first-order language.

Introductory Examples

- Representing "John loves Mary": loves(John, Mary).
- loves: a binary predicate (relation) symbol.
- Intended meaning: The object in the first argument of loves loves the object in its second argument.
- John, Mary: constants.
- Intended meaning: To denote persons John and Mary, respectively.

Introductory Examples

- father: A unary function symbol.
- Intended meaning: The father of the object in its argument.
- John's father loves John: loves(father(John), John).

First-Order Language

- Syntax
- Semantics

Syntax

- Alphabet
- Terms
- Formulas

Alphabet

A first-order alphabet consists of the following disjoint sets of symbols:

- A countable set of variables \mathcal{V}.
- For each $n \geq 0$, a set of n-ary function symbols \mathcal{F}^{n}. Elements of \mathcal{F}^{0} are called constants.
- For each $n \geq 0$, a set of n-ary predicate symbols \mathcal{P}^{n}.
- Logical connectives $\neg, \vee, \wedge, \Rightarrow, \Leftrightarrow$.
- Quantifiers \exists, \forall.
- Parenthesis '(', ')', and comma ','.

Alphabet

A first-order alphabet consists of the following disjoint sets of symbols:

- A countable set of variables \mathcal{V}.
- For each $n \geq 0$, a set of n-ary function symbols \mathcal{F}^{n}. Elements of \mathcal{F}^{0} are called constants.
- For each $n \geq 0$, a set of n-ary predicate symbols \mathcal{P}^{n}.
- Logical connectives $\neg, \vee, \wedge, \Rightarrow, \Leftrightarrow$.
- Quantifiers \exists, \forall.
- Parenthesis '(', ')', and comma ','.

Notation:

- x, y, z for variables.
- f, g for function symbols.
- a, b, c for constants.
- p, q for predicate symbols.

Terms

Definition

- A variable is a term.
- If t_{1}, \ldots, t_{n} are terms and $f \in \mathcal{F}^{n}$, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Nothing else is a term.

Terms

Definition

- A variable is a term.
- If t_{1}, \ldots, t_{n} are terms and $f \in \mathcal{F}^{n}$, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Nothing else is a term.

Notation:

- s, t, r for terms.

Terms

Definition

- A variable is a term.
- If t_{1}, \ldots, t_{n} are terms and $f \in \mathcal{F}^{n}$, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Nothing else is a term.

Notation:

- s, t, r for terms.

Example

- plus $($ plus $(x, 1), x)$ is a term, where plus is a binary function symbol, 1 is a constant, x is a variable.

Terms

Definition

- A variable is a term.
- If t_{1}, \ldots, t_{n} are terms and $f \in \mathcal{F}^{n}$, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Nothing else is a term.

Notation:

- s, t, r for terms.

Example

- plus $($ plus $(x, 1), x)$ is a term, where plus is a binary function symbol, 1 is a constant, x is a variable.
- father(father(John)) is a term, where father is a unary function symbol and John is a constant.

Formulas

Definition

- If t_{1}, \ldots, t_{n} are terms and $p \in \mathcal{P}^{n}$, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula. It is called an atomic formula.
- If A is a formula, $(\neg A)$ is a formula.
- If A and B are formulas, then $(A \vee B),(A \wedge B),(A \Rightarrow B)$, and ($A \Leftrightarrow B$) are formulas.
- If A is a formula, then $(\exists x . A)$ and $(\forall x . A)$ are formulas.
- Nothing else is a formula.

Formulas

Definition

- If t_{1}, \ldots, t_{n} are terms and $p \in \mathcal{P}^{n}$, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula. It is called an atomic formula.
- If A is a formula, $(\neg A)$ is a formula.
- If A and B are formulas, then $(A \vee B),(A \wedge B),(A \Rightarrow B)$, and ($A \Leftrightarrow B$) are formulas.
- If A is a formula, then $(\exists x . A)$ and $(\forall x . A)$ are formulas.
- Nothing else is a formula.

Notation:

- A, B for formulas.

Eliminating Parentheses

- Excessive use of parentheses often can be avoided by introducing binding order.
- \neg, \forall, \exists bind stronger than \vee.
- \vee binds stronger than \wedge.
- \wedge binds stronger than \Rightarrow and \Leftrightarrow.
- Furthermore, omit the outer parentheses and associate $\vee, \wedge, \Rightarrow, \Leftrightarrow$ to the right.

Eliminating Parentheses

Example

The formula

$$
(\forall y \cdot(\forall x \cdot((p(x)) \wedge(\neg r(y))) \Rightarrow((\neg q(x)) \vee(A \vee B)))))
$$

due to binding order can be rewritten into

$$
(\forall y .(\forall x .(p(x) \wedge \neg r(y) \Rightarrow \neg q(x) \vee(A \vee B))))
$$

which thanks to the convention of the association to the right and omitting the outer parentheses further simplifies to

$$
\forall y . \forall x .(p(x) \wedge \neg r(y) \Rightarrow \neg q(x) \vee A \vee B)
$$

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

$$
\forall x .(\operatorname{rational}(x) \Rightarrow \operatorname{real}(x))
$$

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

$$
\forall x .(\operatorname{rational}(x) \Rightarrow \operatorname{real}(x))
$$

2. There exists a number that is prime.

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

$$
\forall x .(\operatorname{rational}(x) \Rightarrow \operatorname{real}(x))
$$

2. There exists a number that is prime.

$$
\exists x . \operatorname{prime}(x)
$$

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

$$
\forall x .(\operatorname{rational}(x) \Rightarrow \operatorname{real}(x))
$$

2. There exists a number that is prime.

$$
\exists x . \operatorname{prime}(x)
$$

3. For every number x, there exists a number y such that $x<y$.

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

$$
\forall x .(\operatorname{rational}(x) \Rightarrow \operatorname{real}(x))
$$

2. There exists a number that is prime.

$$
\exists x . \operatorname{prime}(x)
$$

3. For every number x, there exists a number y such that $x<y$.

$$
\forall x . \exists y . x<y
$$

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0 .

Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0 .

$$
\neg \exists x . z e r o \doteq \operatorname{succ}(x)
$$

Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0 .

$$
\neg \exists x . z e r o \doteq \operatorname{succ}(x)
$$

2. For each natural number there exists exactly one immediate successor natural number.

Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0 .

$$
\neg \exists x . z e r o \doteq \operatorname{succ}(x)
$$

2. For each natural number there exists exactly one immediate successor natural number.

$$
\forall x . \exists y .(y \doteq \operatorname{succ}(x) \wedge \forall z \cdot(z \doteq \operatorname{succ}(x) \Rightarrow y \doteq z))
$$

Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0 .

$$
\neg \exists x . z e r o \doteq \operatorname{succ}(x)
$$

2. For each natural number there exists exactly one immediate successor natural number.

$$
\forall x . \exists y \cdot(y \doteq \operatorname{succ}(x) \wedge \forall z \cdot(z \doteq \operatorname{succ}(x) \Rightarrow y \doteq z))
$$

3. For each nonzero natural number there exists exactly one immediate predecessor natural number.

Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0 .

$$
\neg \exists x . z e r o \doteq \operatorname{succ}(x)
$$

2. For each natural number there exists exactly one immediate successor natural number.

$$
\forall x . \exists y \cdot(y \doteq \operatorname{succ}(x) \wedge \forall z \cdot(z \doteq \operatorname{succ}(x) \Rightarrow y \doteq z))
$$

3. For each nonzero natural number there exists exactly one immediate predecessor natural number.
$\forall x .(\neg(x \doteq z e r o) \Rightarrow \exists y .(y \doteq \operatorname{pred}(x) \wedge \forall z .(z \doteq \operatorname{pred}(x) \Rightarrow y \doteq z)))$
Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

Semantics

- Meaning of a first-order language consists of an universe and an appropriate meaning of each symbol.
- This pair is called structure.
- Structure fixes interpretation of function and predicate symbols.
- Meaning of variables is determined by a variable assignment.
- Interpretation of terms and formulas.

Structure

- Structure: a pair (D, I).
- D is a nonempty universe, the domain of interpretation.
- I is an interpretation function defined on D that fixes the meaning of each symbol associating
- to each $f \in \mathcal{F}^{n}$ an n-ary function $f_{I}: D^{n} \rightarrow D$, (in particular, $c_{I} \in D$ for each constant c)
- to each $p \in \mathcal{P}^{n}$ different from \doteq, an n-ary relation p_{I} on D.

Variable Assignment

- A structure $\mathcal{S}=(D, I)$ is given.
- Variable assignment $\sigma_{\mathcal{S}}$ maps each $x \in \mathcal{V}$ into an element of $D: \sigma_{\mathcal{S}}(x) \in D$.
- Given a variable x, an assignment $\vartheta_{\mathcal{S}}$ is called an x-variant of $\sigma_{\mathcal{S}}$ iff $\vartheta_{\mathcal{S}}(y)=\sigma_{\mathcal{S}}(y)$ for all $y \neq x$.

Interpretation of Terms

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.

Interpretation of Terms

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Value of a term t under \mathcal{S} and $\sigma_{\mathcal{S}}, \operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(t)$:
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(x)=\sigma_{\mathcal{S}}(x)$.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f_{I}\left(\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}\left(t_{1}\right), \ldots, \operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}\left(t_{n}\right)\right)$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Value of an atomic formula under \mathcal{S} and $\sigma_{\mathcal{S}}$ is one of true, false:

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Value of an atomic formula under \mathcal{S} and $\sigma_{\mathcal{S}}$ is one of true, false:
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(s \doteq t)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(s)=\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(t)$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Value of an atomic formula under \mathcal{S} and $\sigma_{\mathcal{S}}$ is one of true, false:
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(s \doteq t)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(s)=\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(t)$.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=$ true iff
$\left(\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}\left(t_{1}\right), \ldots, \operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}\left(t_{n}\right)\right) \in p_{I}$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \vee B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \vee B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \wedge B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true and $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- Val ${\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \vee B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \wedge B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true and $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Rightarrow B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- Val $\mathcal{S}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \vee B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \wedge B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true and $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Rightarrow B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Leftrightarrow B)=$ true iff $^{\operatorname{Val}} \mathcal{S}_{\mathcal{S}} \sigma_{\mathcal{S}}(A)=\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- Val $\mathcal{S}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \vee B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \wedge B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true and $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Rightarrow B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Leftrightarrow B)=$ true iff $^{\operatorname{Val}} \mathcal{S}_{\mathcal{S}} \sigma_{\mathcal{S}}(A)=\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)$.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\exists x . A)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \vartheta_{\mathcal{S}}}(A)=$ true for some x-variant $\vartheta_{\mathcal{S}}$ of $\sigma_{\mathcal{S}}$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ and a variable assignment $\sigma_{\mathcal{S}}$ are given.
- Values of compound formulas under \mathcal{S} and $\sigma_{\mathcal{S}}$ are also either true or false:
- Val $\mathcal{S}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\neg A)=$ true iff $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \vee B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \wedge B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ true and $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Rightarrow B)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A)=$ false or $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)=$ true.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(A \Leftrightarrow B)=$ true iff $^{\operatorname{Val}} \mathcal{S}_{\mathcal{S}} \sigma_{\mathcal{S}}(A)=\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(B)$.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\exists x . A)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \vartheta_{\mathcal{S}}}(A)=$ true for some x-variant $\vartheta_{\mathcal{S}}$ of $\sigma_{\mathcal{S}}$.
- $\operatorname{Val}_{\mathcal{S}, \sigma_{\mathcal{S}}}(\forall x . A)=$ true iff
$\operatorname{Val}_{\mathcal{S}, \vartheta_{\mathcal{S}}}(A)=$ true for all x-variants $\vartheta_{\mathcal{S}}$ of $\sigma_{\mathcal{S}}$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ is given.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ is given.
- The value of a formula A under \mathcal{S} is either true or false:
- $\operatorname{Val}_{\mathcal{S}}(A)=$ true iff $\operatorname{Val}_{\mathcal{S}}, \sigma_{\mathcal{S}}(A)=$ true for all $\sigma_{\mathcal{S}}$.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ is given.
- The value of a formula A under \mathcal{S} is either true or false:
- $\operatorname{Val}_{\mathcal{S}}(A)=$ true iff $\operatorname{Val}_{\mathcal{S}}, \sigma_{\mathcal{S}}(A)=$ true for all $\sigma_{\mathcal{S}}$.
- \mathcal{S} is called a model of A iff $\operatorname{Val}_{\mathcal{S}}(A)=$ true.

Interpretation of Formulas

- A structure $\mathcal{S}=(D, I)$ is given.
- The value of a formula A under \mathcal{S} is either true or false:
- $\operatorname{Val}_{\mathcal{S}}(A)=$ true iff $\operatorname{Val}_{\mathcal{S}}, \sigma_{\mathcal{S}}(A)=$ true for all $\sigma_{\mathcal{S}}$.
- \mathcal{S} is called a model of A iff $\operatorname{Val}_{\mathcal{S}}(A)=$ true.
- Written $\vDash_{\mathcal{S}} A$.

Example

- Formula: $\forall x .(p(x) \Rightarrow q(f(x), a))$

Example

- Formula: $\forall x .(p(x) \Rightarrow q(f(x), a))$
- Define $\mathcal{S}=(D, I)$ as
- $D=\{1,2\}$,
- $a_{I}=1$,
- $f_{I}(1)=2, f_{I}(2)=1$,
- $p_{I}=\{2\}$,
- $q_{I}=\{(1,1),(1,2),(2,2)\}$.

Example

- Formula: $\forall x .(p(x) \Rightarrow q(f(x), a))$
- Define $\mathcal{S}=(D, I)$ as
- $D=\{1,2\}$,
- $a_{I}=1$,
- $f_{I}(1)=2, f_{I}(2)=1$,
- $p_{I}=\{2\}$,
- $q_{I}=\{(1,1),(1,2),(2,2)\}$.
- If $\sigma_{\mathcal{S}}(x)=1$, then $\operatorname{Val}_{\mathcal{S}, \sigma_{S}}(\forall x .(p(x) \Rightarrow q(f(x), a)))=$ true.

Example

- Formula: $\forall x .(p(x) \Rightarrow q(f(x), a))$
- Define $\mathcal{S}=(D, I)$ as
- $D=\{1,2\}$,
- $a_{I}=1$,
- $f_{I}(1)=2, f_{I}(2)=1$,
- $p_{I}=\{2\}$,
- $q_{I}=\{(1,1),(1,2),(2,2)\}$.
- If $\sigma_{\mathcal{S}}(x)=1$, then $\operatorname{Val}_{\mathcal{S}, \sigma_{S}}(\forall x .(p(x) \Rightarrow q(f(x), a)))=$ true.
- If $\sigma_{\mathcal{S}}(x)=2$, then $\operatorname{Val}_{\mathcal{S}, \sigma_{S}}(\forall x .(p(x) \Rightarrow q(f(x), a)))=$ true .

Example

- Formula: $\forall x .(p(x) \Rightarrow q(f(x), a))$
- Define $\mathcal{S}=(D, I)$ as
- $D=\{1,2\}$,
- $a_{I}=1$,
- $f_{I}(1)=2, f_{I}(2)=1$,
- $p_{I}=\{2\}$,
- $q_{I}=\{(1,1),(1,2),(2,2)\}$.
- If $\sigma_{\mathcal{S}}(x)=1$, then $\operatorname{Val}_{\mathcal{S}, \sigma_{S}}(\forall x .(p(x) \Rightarrow q(f(x), a)))=$ true.
- If $\sigma_{\mathcal{S}}(x)=2$, then $\operatorname{Val}_{\mathcal{S}, \sigma_{S}}(\forall x .(p(x) \Rightarrow q(f(x), a)))=$ true.
- Hence, $\vDash_{\mathcal{S}} A$.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.
- For $\left\{A_{1}, \ldots, A_{n}\right\}$, just formulate them for $A_{1} \wedge \cdots \wedge A_{n}$.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.
- For $\left\{A_{1}, \ldots, A_{n}\right\}$, just formulate them for $A_{1} \wedge \cdots \wedge A_{n}$.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.
- For $\left\{A_{1}, \ldots, A_{n}\right\}$, just formulate them for $A_{1} \wedge \cdots \wedge A_{n}$.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.
- For $\left\{A_{1}, \ldots, A_{n}\right\}$, just formulate them for $A_{1} \wedge \cdots \wedge A_{n}$.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{\mathcal{S}} A$ for all \mathcal{S}.
- Written $\vDash A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S}.
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.
- For $\left\{A_{1}, \ldots, A_{n}\right\}$, just formulate them for $A_{1} \wedge \cdots \wedge A_{n}$.

Validity, Unsatisfiability

- $\forall x \cdot p(x) \Rightarrow \exists y \cdot p(y)$ is valid.
- $p(a) \Rightarrow \neg \exists x . p(x)$ is satisfiable non-valid.
- $\forall x \cdot p(x) \wedge \exists y . \neg p(y)$ is unsatisfiable.

Logical Consequence

Definition
A formula A is a logical consequence of the formulas B_{1}, \ldots, B_{n}, if every model of $B_{1} \wedge \cdots \wedge B_{n}$ is a model of A.

Logical Consequence

Definition

A formula A is a logical consequence of the formulas B_{1}, \ldots, B_{n}, if every model of $B_{1} \wedge \cdots \wedge B_{n}$ is a model of A.

Example

- mortal(socrates) is a logical consequence of $\forall x .(\operatorname{person}(x) \Rightarrow \operatorname{mortal}(x))$ and person(socrates).
- cooked (apple) is a logical consequence of $\forall x .(\neg \operatorname{cooked}(x) \Rightarrow \operatorname{tasty}(x))$ and \neg tasty (apple).
- genius(einstein) is not a logical consequence of $\exists x . \operatorname{person}(x) \wedge \operatorname{genius}(x)$ and person(einstein).

Logic Programs

- Logic programs: finite non-empty sets of formulas of a special form, called program clauses.

Logic Programs

- Logic programs: finite non-empty sets of formulas of a special form, called program clauses.
- Program clause:

$$
\forall x_{1} \ldots \forall x_{k} \cdot B_{1} \wedge \cdots \wedge B_{n} \Rightarrow A
$$

where

- $k, n \geq 0$,
- A and the B 's are atomic formulas,
- x_{1}, \ldots, x_{k} are all the variables which occur in A, B_{1}, \ldots, B_{n}.

Logic Programs

- Logic programs: finite non-empty sets of formulas of a special form, called program clauses.
- Program clause:

$$
\forall x_{1} \ldots \forall x_{k} \cdot B_{1} \wedge \cdots \wedge B_{n} \Rightarrow A
$$

where

- $k, n \geq 0$,
- A and the B 's are atomic formulas,
- x_{1}, \ldots, x_{k} are all the variables which occur in A, B_{1}, \ldots, B_{n}.
- Usually written in the inverse implication form without quantifiers and conjunctions:

$$
A \Leftarrow B_{1}, \ldots, B_{n}
$$

Goal

- Goals or queries of logic programs: formulas of the form

$$
\exists x_{1} \ldots \exists x_{k} \cdot B_{1} \wedge \cdots \wedge B_{n},
$$

where

- $k, n \geq 0$,
- the B 's are atomic formulas,
- x_{1}, \ldots, x_{k} are all the variables which occur in B_{1}, \ldots, B_{n}.

Goal

- Goals or queries of logic programs: formulas of the form

$$
\exists x_{1} \ldots \exists x_{k} \cdot B_{1} \wedge \cdots \wedge B_{n}
$$

where

- $k, n \geq 0$,
- the B 's are atomic formulas,
- x_{1}, \ldots, x_{k} are all the variables which occur in B_{1}, \ldots, B_{n}.
- Usually written without quantifiers and conjunction:

$$
B_{1}, \ldots, B_{n}
$$

Goal

- Goals or queries of logic programs: formulas of the form

$$
\exists x_{1} \ldots \exists x_{k} \cdot B_{1} \wedge \cdots \wedge B_{n}
$$

where

- $k, n \geq 0$,
- the B 's are atomic formulas,
- x_{1}, \ldots, x_{k} are all the variables which occur in B_{1}, \ldots, B_{n}.
- Usually written without quantifiers and conjunction:

$$
B_{1}, \ldots, B_{n}
$$

- The problem is to find out whether a goal is a logical consequence of the given logic program or not.

The Problem and the Idea

- Let P be a program and G be a goal.
- Problem: Is G a logical consequence of P ?

The Problem and the Idea

- Let P be a program and G be a goal.
- Problem: Is G a logical consequence of P ?
- Idea: Try to show that the set of formulas $P \cup\{\neg G\}$ is inconsistent.

The Problem and the Idea

- Let P be a program and G be a goal.
- Problem: Is G a logical consequence of P ?
- Idea: Try to show that the set of formulas $P \cup\{\neg G\}$ is inconsistent.
- How? This we will learn in this course.

Example

Let P consist of the two clauses:

- $\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x)$.
- person(socrates).

Goal: $G=\exists x \cdot \operatorname{mortal}(x)$.

Example

Let P consist of the two clauses:

- $\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x)$.
- person(socrates).

Goal: $G=\exists x \cdot \operatorname{mortal}(x)$.
$\neg G$ is equivalent to $\forall x$. $\neg \operatorname{mortal}(x)$.

Example

Let P consist of the two clauses:

- $\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x)$.
- person(socrates).

Goal: $G=\exists x$.mortal (x).
$\neg G$ is equivalent to $\forall x$. $\neg \operatorname{mortal}(x)$.
The set

$$
\{\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x), \operatorname{person}(\operatorname{socrates}), \forall x . \neg \operatorname{mortal}(x)\}
$$

is inconsistent.

Example

Let P consist of the two clauses:

- $\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x)$.
- person(socrates).

Goal: $G=\exists x \cdot \operatorname{mortal}(x)$.
$\neg G$ is equivalent to $\forall x$. $\neg \operatorname{mortal}(x)$.
The set

$$
\{\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x), \operatorname{person}(\operatorname{socrates}), \forall x . \neg \operatorname{mortal}(x)\}
$$

is inconsistent.
Hence, G is a logical consequence of P.

Example

Let P consist of the two clauses:

- $\forall x \cdot \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x)$.
- person(socrates).

Goal: $G=\exists x \cdot \operatorname{mortal}(x)$.
$\neg G$ is equivalent to $\forall x$. $\neg \operatorname{mortal}(x)$.
The set

$$
\{\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x), \text { person }(\operatorname{socrates}), \forall x . \neg \operatorname{mortal}(x)\}
$$

is inconsistent.
Hence, G is a logical consequence of P.
We can even compute the witness term for the goal:
$x=$ socrates.

Example

Let P consist of the two clauses:

- $\forall x \cdot \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x)$.
- person(socrates).

Goal: $G=\exists x \cdot \operatorname{mortal}(x)$.
$\neg G$ is equivalent to $\forall x$. $\neg \operatorname{mortal}(x)$.
The set

$$
\{\forall x . \operatorname{mortal}(x) \Leftarrow \operatorname{person}(x), \text { person }(\operatorname{socrates}), \forall x . \neg \operatorname{mortal}(x)\}
$$

is inconsistent.
Hence, G is a logical consequence of P.
We can even compute the witness term for the goal:
$x=$ socrates.
How? This we will learn in this lecture.

