Übungen zu

Lineare Algebra für Physiker(innen)

5. Übungsblatt für den 5. 11. 2018

30. Sei $f:A\to B$ eine Funktion. In Beispiel 29 haben wir gesehen, dass $x\sim y:\Leftrightarrow f(x)=f(y)$ eine Äquivalenzrelation auf A definiert. Zeigen Sie, dass

$$F: A_{/\sim} \to f(A), \ K_{\sim}(x) \mapsto f(x)$$

eine bijektive Funktion beschreibt.

Achtung, zeigen Sie dass F tatsächlich eine Funktion ist.

- 31. Zeigen Sie, dass \mathbb{Z} und \mathbb{Q} abzählbar sind (Satz 1.4.52).
- 32. Sei R ein Ring mit Einselement. Finden Sie das Einselement im Ring der formalen Potenzreihen R[[x]] (siehe Bsp. 1.5.30). Finden Sie die inversen Elemente von R[[x]] anhand der Definition der Multiplikation und mittels Koeffizientenvergleich.
- 33. Sei $A_n = \{e^{2\pi i k/n} \mid k = 0, \dots, n-1\}$ für $n \in \mathbb{N}$.
 - (a) Zeigen Sie, dass (A_n, \cdot) mit der Multiplikation für komplexe Zahlen eine Gruppe bildet. Ist sie auch zyklisch?
 - (b) Sei n ein Teiler von m. Zeigen Sie, dass dann (A_n, \cdot) eine Untergruppe von (A_m, \cdot) bildet. Gilt auch $A_n \subseteq A_m$?
 - (c) Berechnen Sie die Faktorgruppe A_m/A_n .
- 34. Sei $G = (\mathbb{Z}, +)$ und $H = (\{1, i, -1, -i\}, \cdot)$, wobei i der imaginären Einheit entspricht. Wir definieren die Abbildung $\psi : G \to H$ durch $\psi(n) := i^n$.
 - (a) Ist ψ ein Homomorphismus?
 - (b) Bestimmen Sie kern (ψ) und im (ψ) .
 - (c) Geben Sie einen Ismomorphismus zwischen $G/\ker(\psi)$ und $\operatorname{im}(\psi)$ an.
- 35. Sei I ein Integritätsbereich und Q(I) dessen Quotientenkörper.
 - (a) Bestimmen Sie das neutrale Element bzgl. Addition bzw. Multiplikation in Q(I).
 - (b) Zeigen Sie, dass die Addition und Multiplikation auf Q(I) wohldefiniert sind, also dass sie Funktionen von $Q(I) \times Q(I)$ nach Q(I) sind.

Seien $(R, +, \cdot)$ und $(S, *, \times)$ Ringe mit Einselement 1 und 1'. Dann heit eine Abbildung $\phi: R \to S$ Ringhomomorphismus, falls für alle $r \in R, s \in S$

1

1.
$$\phi(r+s) = \phi(r) * \phi(s)$$

2.
$$\phi(r \cdot s) = \phi(r) \times \phi(s)$$

3.
$$\phi(1) = 1'$$

gilt.

36. Seien I und Q(I) wie in Bsp. 35. Zeigen Sie, dass die Abbildung

$$\phi: I \to Q(I), \ x \mapsto x/1$$

ein injektiver Ringhomomorphismus ist.