Übungsblatt 4

Besprechung am 3.11.2016

Aufgabe 1 Sei $f: A \to B$ eine bijektive Funktion. Zeigen Sie:

- a) f^{-1} ist ebenfalls bijektiv.
- b) $(f^{-1})^{-1} = f$.

Aufgabe 2 Beweisen Sie den Satz von Pythagoras.

Aufgabe 3 Zeigen Sie das Lemma aus der Vorlesung:

- a) $\sin(x)^2 + \cos(x)^2 = 1$
- b) $\tan(x) = \frac{\sin(x)}{\cos(x)}$ c) $\cot(x) = \frac{\cos(x)}{\sin(x)}$
- d) $\sin(x) = \cos(90^{\circ} x)$

Aufgabe 4 Berechnen Sie die exakten Werte (d.h. keine Gleitkommazahlen) von

- a) $\cos(\tan^{-1}(\frac{1}{2}))$
- b) $\sin(\cos^{-1}(\frac{2}{3}))$ c) $\sin(\frac{\pi}{4})$ (bzw. $\sin(45^{\circ})$)

Aufgabe 5 Es sei n > 0 und $x = (x_1, \ldots, x_n)$ eine endliche Folge strikt positiver reeller Zahlen $(x_i > 0)$ mit der Eigenschaft $\prod_{i=1}^n x_i = 1$. Zeigen Sie, dass dann $\sum_{i=1}^n x_i \ge n$.

Aufgabe 6 Es sei n > 0 und $x = (x_1, \ldots, x_n)$ eine endliche Folge reeller Zahlen mit $x_i \ge 0 \ (1 \le i \le n)$. Beweisen Sie die Ungleichung

$$n \cdot \sqrt[n]{\prod_{i=1}^{n} x_i} \le \sum_{i=1}^{n} x_i.$$

Aufgabe 7 Es seien n > 0 eine natürliche Zahl und $x = (x_1, \ldots, x_n), y = (yx_1, \ldots, y_n)$ zwei endliche Folgen reeller Zahlen. Zeigen Sie

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i^2.$$