Introduction to Logic Programming

Foundations, First-Order Language

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria
kutsia@risc. jku.at

1/28

What is a Logic Program

» Logic program is a set of certain formulas of a first-order
language.

» In this lecture: syntax and semantics of a first-order
language.

2/28



Introductory Examples

» Representing “John loves Mary”: loves(John, Mary).
» loves: a binary predicate (relation) symbol.

» Intended meaning: The object in the first argument of loves
loves the object in its second argument.

» John, Mary:. constants.

» Intended meaning: To denote persons John and Mary,
respectively.

3/28

Introductory Examples

» father: A unary function symbol.
» Intended meaning: The father of the object in its argument.
» John’s father loves John: loves(father(John), John).

4/28



First-Order Language

» Syntax
» Semantics

5/28

Syntax

» Alphabet
» Terms
» Formulas

6/28



Alphabet

A first-order alphabet consists of the following disjoint sets of
symbols:

» A countable set of variables V.

» For each n > 0, a set of n-ary function symbols F".
Elements of FY are called constants.

» For each n > 0, a set of n-ary predicate symbols P".
» Logical connectives —, Vv, A, =, <.
» Quantifiers 3, V.
» Parenthesis (', ), and comma ‘.
Notation:
» x,y,z for variables.
» f, g for function symbols.
» a, b, c for constants.
» p, q for predicate symbols.

7/28

Terms

Definition
» A variable is a term.

» Ifry,...,t, areterms and f € F", then f(z,...,t,) is a term.
» Nothing else is a term.

Notation:
» s, t,r for terms.

Example

» plus(plus(x, 1),x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

> father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

8/28



Formulas

Definition
» Ift,...,1, areterms and p € P*, then p(¢1,...,t,) is a
formula. It is called an atomic formula.
» If A is a formula, (—A) is a formula.

» If A and B are formulas, then (A Vv B), (A A B), (A = B), and
(A < B) are formulas.

» If Ais a formula, then (3x.A) and (Vx.A) are formulas.
» Nothing else is a formula.

Notation:
» A, B for formulas.

9/28

Eliminating Parentheses

» Excessive use of parentheses often can be avoided by
introducing binding order.

» —,V, d bind stronger than V.
» V binds stronger than A.
» A binds stronger than = and <.

» Furthermore, omit the outer parentheses and associate
V, A\, =, < to the right.

10/28



Eliminating Parentheses

Example
The formula

(. (vx.((p(x)) A (=r(y)) = ((mg(x)) V (AV B)))))

due to binding order can be rewritten into

(Vy.(vx.(p(x) A =r(y) = —g(x) V (AV B))))

which thanks to the convention of the association to the right
and omitting the outer parentheses further simplifies to

Vy.Vx.(p(x) A =r(y) = —q(x) VAV B).

11/28

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.
Vx.(rational(x) = real(x))
2. There exists a number that is prime.
Ax. prime(x)
3. For every number x, there exists a number y such that
x < y.
Vx.dy.x <y
Assume:
» rational, real, prime: unary predicate symbols.
» <: binary predicate symbol.

12/28



Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor
is 0.
—dx.zero = succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

Vx.3y.(y = succ(x) A Vz.(z = succ(x) =y = z))
3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

Vx.(—(x = zero) = Jy.(y = pred(x) AVz.(z = pred(x) = y = z)))
Assume:
» zero. constant
» succ, pred: unary function symbols.
» =: binary predicate symbol.

Semantics

» Meaning of a first-order language consists of an universe
and an appropriate meaning of each symbol.

» This pair is called structure.

» Structure fixes interpretation of function and predicate
symbols.

» Meaning of variables is determined by a variable
assignment.

» Interpretation of terms and formulas.

13/28

14/28



Structure

» Structure: a pair (D, I).
» D is a nonempty universe, the domain of interpretation.

» [ is an interpretation function defined on D that fixes the
meaning of each symbol associating
» to each f € 7" an n-ary function f; : D" — D,
(in particular, ¢; € D for each constant ¢)
» to each p € P" different from =, an n-ary relation p; on D.

15/28

Variable Assignment

» A structure S = (D, ) is given.

» Variable assignment os maps each x € V into an element
of D: os5(x) € D.

» Given a variable x, an assignment ¢s is called an x-variant
of os iff ¥s(y) = os(y) for all y # x.

16/28



Interpretation of Terms

» A structure S = (D, I) and a variable assignment os are
given.
» Value of aterm ¢t under S and o5, Vals »(t):

> Vals o4 (x) = os(x).
> Vals o5 (f(t1, .- tn)) = filVals 55 (1), . .., Vals o5 (1))

17/28

Interpretation of Formulas

» A structure S = (D, ) and a variable assignment o5 are
given.
» Value of an atomic formula under S and os is one of true,
false:
> Vals o5 (s =t) = true iff Vals »4(s) = Vals 4 (1).
> Vals o5 (p(ti, ... 1)) = true iff
(Vals os(t1), ..., Vals -5 (1)) € pr.

18/28



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment os are

» Values of compound formulas under § and o are also

given.

either true or false:

>

>

Vals o5 (—A) = true iff Vals ,,(A) = false.
Vals -5 (A V B) = true iff

Vals 5 (A) = true or Vals ,(B) = true.
Vals -5 (A N\ B) = true iff

Vals - (A) = true and Vals ¢ (B) = true.
Vals -5 (A = B) = true iff

Vals - (A) = false or Vals ¢ (B) = true.

> Vals 55 (A < B) = true iff Vals ,5(A) = Vals -5 (B).
> Vals o5 (3x.A) = true iff

Vals ys(A) = true for some x-variant ¥s of os.
Vals - (Vx.A) = true iff
Vals g (A) = true for all x-variants Js of os.

Interpretation of Formulas

v

v

v

A structure S = (D, 1) is given.

The value of a formula A under S is either true or false:

>

Vals(A) = true iff Vals, os(A) = true for all os.

S is called a model of A iff Vals(A) = true.
Written Eg A.

19/28

20/28



Example

v

Formula: Vx.(p(x) = q(f(x),a))
Define S = (D, I) as

» D={1,2},

> a =1,

> fi(1) =2,£i(2) = 1,

> pr=1{2},

> qr=1{(1,1),(1,2),(2,2)}.
> If os(x) =1, then Vals »,(Vx.(p(x) = q(f(x),a))) = true.
> If os(x) =2, then Vals o, (Vx.(p(x) = q(f(x),a))) = true.
» Hence, Fs A.

v

21/28

Validity, Unsatisfiability

» A formula A is valid, if Fs A for all S.

» Written F A.

» A formula A is unsatisfiable, if =g A for no S.

» If A is valid, then —A is unsatisfiable and vice versa.

» The notions extend to (multi)sets of formulas.

» For {A},...,A,}, just formulate them for A; A --- A A,.

Non-valid

Valid sat

Unsat

22/28



Validity, Unsatisfiability

Non-valid

Valid sat

Unsat

» Vx.p(x) = Jy.p(y) is valid.
» p(a) = —3x.p(x) is satisfiable non-valid.
» Vx.p(x) A Jy.—p(y) is unsatisfiable.

Logical Consequence

Definition

A formula A is a logical consequence of the formulas By, ...

if every model of By A --- A B, is a model of A.
Example

» mortal(socrates) is a logical consequence of
Vx.(person(x) = mortal(x)) and person(socrates).

» cooked(apple) is a logical consequence of
Vx.(—cooked(x) = tasty(x)) and —tasty(apple).

» genius(einstein) is not a logical consequence of
dx.person(x) A genius(x) and person(einstein).

23/28

24/28



Logic Programs

Goal

Logic programs: finite non-empty sets of formulas of a
special form, called program clauses.

Program clause:
Vxi....Vxg. By AN---ANB, = A,

where
> k,n >0,
» A and the B’s are atomic formulas,

» xi,...,Xx; are all the variables which occurin A, By, ..., B,.

Usually written in the inverse implication form without
quantifiers and conjunctions:

A<=By,....B,

Goals or queries of logic programs: formulas of the form

dxy....dxg. By A -+ A By,

where
» k,n >0,
» the B’s are atomic formulas,
» xi1,...,x; are all the variables which occur in By, ...,B,.

Usually written without quantifiers and conjunction:
Bi,...,B,

The problem is to find out whether a goal is a logical
consequence of the given logic program or not.

25/28

26/28



The Problem and the Idea

» Let P be a program and G be a goal.
Problem: Is G a logical consequence of P?

|dea: Try to show that the set of formulas P U {-G} is
inconsistent.

» How? This we will learn in this course.

v

v

27/28

Example

Let P consist of the two clauses:
> Vx.mortal(x) < person(x).

> person(socrates).
Goal: G = Ix.mortal(x).

—G is equivalent to Vx.—mortal(x).
The set

{Vx.mortal(x) < person(x), person(socrates), Vx.—mortal(x)}

IS inconsistent.
Hence, G is a logical consequence of P.

We can even compute the witness term for the goal:
X = socrates.

How? This we will learn in this lecture.

28/28



