
Introduction to Logic Programming
Foundations, First-Order Language

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

1 / 28

What is a Logic Program

I Logic program is a set of certain formulas of a first-order
language.

I In this lecture: syntax and semantics of a first-order
language.

2 / 28

Introductory Examples

I Representing “John loves Mary”: loves(John,Mary).
I loves: a binary predicate (relation) symbol.
I Intended meaning: The object in the first argument of loves

loves the object in its second argument.
I John, Mary: constants.
I Intended meaning: To denote persons John and Mary,

respectively.

3 / 28

Introductory Examples

I father: A unary function symbol.
I Intended meaning: The father of the object in its argument.
I John’s father loves John: loves(father(John), John).

4 / 28

First-Order Language

I Syntax
I Semantics

5 / 28

Syntax

I Alphabet
I Terms
I Formulas

6 / 28

Alphabet
A first-order alphabet consists of the following disjoint sets of
symbols:
I A countable set of variables V.
I For each n ≥ 0, a set of n-ary function symbols Fn.

Elements of F0 are called constants.
I For each n ≥ 0, a set of n-ary predicate symbols Pn.
I Logical connectives ¬, ∨, ∧,⇒,⇔.
I Quantifiers ∃, ∀.
I Parenthesis ‘(’, ‘)’, and comma ‘,’.

Notation:
I x, y, z for variables.
I f , g for function symbols.
I a, b, c for constants.
I p, q for predicate symbols.

7 / 28

Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.
I Nothing else is a term.

Notation:
I s, t, r for terms.

Example

I plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

I father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

8 / 28

Formulas

Definition
I If t1, . . . , tn are terms and p ∈ Pn, then p(t1, . . . , tn) is a

formula. It is called an atomic formula.
I If A is a formula, (¬A) is a formula.
I If A and B are formulas, then (A ∨ B), (A ∧ B), (A⇒ B), and

(A⇔ B) are formulas.
I If A is a formula, then (∃x.A) and (∀x.A) are formulas.
I Nothing else is a formula.

Notation:
I A,B for formulas.

9 / 28

Eliminating Parentheses

I Excessive use of parentheses often can be avoided by
introducing binding order.

I ¬, ∀, ∃ bind stronger than ∨.
I ∨ binds stronger than ∧.
I ∧ binds stronger than⇒ and⇔.
I Furthermore, omit the outer parentheses and associate
∨,∧,⇒,⇔ to the right.

10 / 28

Eliminating Parentheses

Example
The formula

(∀y.(∀x.((p(x)) ∧ (¬r(y)))⇒ ((¬q(x)) ∨ (A ∨ B)))))

due to binding order can be rewritten into

(∀y.(∀x.(p(x) ∧ ¬r(y)⇒ ¬q(x) ∨ (A ∨ B))))

which thanks to the convention of the association to the right
and omitting the outer parentheses further simplifies to

∀y.∀x.(p(x) ∧ ¬r(y)⇒ ¬q(x) ∨ A ∨ B).

11 / 28

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational(x)⇒ real(x))

2. There exists a number that is prime.
∃x. prime(x)

3. For every number x, there exists a number y such that
x < y.

∀x.∃y. x < y

Assume:
I rational, real, prime: unary predicate symbols.
I <: binary predicate symbol.

12 / 28

Example
Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor
is 0.

¬∃x.zero .
= succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

∀x.∃y.(y .
= succ(x) ∧ ∀z.(z .

= succ(x)⇒ y .
= z))

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x.(¬(x .
= zero)⇒ ∃y.(y .

= pred(x) ∧ ∀z.(z .
= pred(x)⇒ y .

= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.
=: binary predicate symbol.

13 / 28

Semantics

I Meaning of a first-order language consists of an universe
and an appropriate meaning of each symbol.

I This pair is called structure.
I Structure fixes interpretation of function and predicate

symbols.
I Meaning of variables is determined by a variable

assignment.
I Interpretation of terms and formulas.

14 / 28

Structure

I Structure: a pair (D, I).
I D is a nonempty universe, the domain of interpretation.
I I is an interpretation function defined on D that fixes the

meaning of each symbol associating
I to each f ∈ Fn an n-ary function fI : Dn → D,

(in particular, cI ∈ D for each constant c)
I to each p ∈ Pn different from .

=, an n-ary relation pI on D.

15 / 28

Variable Assignment

I A structure S = (D, I) is given.
I Variable assignment σS maps each x ∈ V into an element

of D: σS(x) ∈ D.
I Given a variable x, an assignment ϑS is called an x-variant

of σS iff ϑS(y) = σS(y) for all y 6= x.

16 / 28

Interpretation of Terms

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of a term t under S and σS , ValS,σS (t):
I ValS,σS (x) = σS(x).
I ValS,σS (f (t1, . . . , tn)) = fI(ValS,σS (t1), . . . ,ValS,σS (tn)).

17 / 28

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of true,
false:

I ValS,σS (s
.
= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .

18 / 28

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

19 / 28

Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.
I Written �S A.

20 / 28

Example

I Formula: ∀x.(p(x)⇒ q(f (x), a))
I Define S = (D, I) as

I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

I If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I Hence, �S A.

21 / 28

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Valid
Non-valid

sat Unsat

22 / 28

Validity, Unsatisfiability

Valid
Non-valid

sat Unsat

I ∀x.p(x)⇒ ∃y.p(y) is valid.
I p(a)⇒ ¬∃x.p(x) is satisfiable non-valid.
I ∀x.p(x) ∧ ∃y.¬p(y) is unsatisfiable.

23 / 28

Logical Consequence

Definition
A formula A is a logical consequence of the formulas B1, . . . ,Bn,
if every model of B1 ∧ · · · ∧ Bn is a model of A.

Example

I mortal(socrates) is a logical consequence of
∀x.(person(x)⇒ mortal(x)) and person(socrates).

I cooked(apple) is a logical consequence of
∀x.(¬cooked(x)⇒ tasty(x)) and ¬tasty(apple).

I genius(einstein) is not a logical consequence of
∃x.person(x) ∧ genius(x) and person(einstein).

24 / 28

Logic Programs

I Logic programs: finite non-empty sets of formulas of a
special form, called program clauses.

I Program clause:

∀x1. . . .∀xk.B1 ∧ · · · ∧ Bn ⇒ A,

where
I k, n ≥ 0,
I A and the B’s are atomic formulas,
I x1, . . . , xk are all the variables which occur in A,B1, . . . ,Bn.

I Usually written in the inverse implication form without
quantifiers and conjunctions:

A⇐ B1, . . . ,Bn

25 / 28

Goal

I Goals or queries of logic programs: formulas of the form

∃x1. . . .∃xk.B1 ∧ · · · ∧ Bn,

where
I k, n ≥ 0,
I the B’s are atomic formulas,
I x1, . . . , xk are all the variables which occur in B1, . . . ,Bn.

I Usually written without quantifiers and conjunction:

B1, . . . ,Bn

I The problem is to find out whether a goal is a logical
consequence of the given logic program or not.

26 / 28

The Problem and the Idea

I Let P be a program and G be a goal.
I Problem: Is G a logical consequence of P?
I Idea: Try to show that the set of formulas P ∪ {¬G} is

inconsistent.
I How? This we will learn in this course.

27 / 28

Example
Let P consist of the two clauses:
I ∀x.mortal(x)⇐ person(x).
I person(socrates).

Goal: G = ∃x.mortal(x).

¬G is equivalent to ∀x.¬mortal(x).

The set

{∀x.mortal(x)⇐ person(x), person(socrates), ∀x.¬mortal(x)}

is inconsistent.

Hence, G is a logical consequence of P.

We can even compute the witness term for the goal:
x = socrates.

How? This we will learn in this lecture.

28 / 28

