Introduction to Logic Programming Foundations, First-Order Language

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University Linz, Austria kutsia@risc.jku.at

What is a Logic Program

- Logic program is a set of certain formulas of a first-order language.
- In this lecture: syntax and semantics of a first-order language.

Introductory Examples

- Representing "John loves Mary": loves(John, Mary).
- loves: a binary predicate (relation) symbol.
- Intended meaning: The object in the first argument of *loves* loves the object in its second argument.
- *John*, *Mary*: constants.
- Intended meaning: To denote persons John and Mary, respectively.

- father: A unary function symbol.
- Intended meaning: The father of the object in its argument.
- ► John's father loves John: *loves*(*father*(*John*), *John*).

First-Order Language

- Syntax
- Semantics

Syntax

- Alphabet
- Terms
- Formulas

Alphabet

A first-order alphabet consists of the following disjoint sets of symbols:

- A countable set of variables \mathcal{V} .
- For each n ≥ 0, a set of n-ary function symbols Fⁿ.
 Elements of F⁰ are called constants.
- For each $n \ge 0$, a set of *n*-ary predicate symbols \mathcal{P}^n .
- Logical connectives \neg , \lor , \land , \Rightarrow , \Leftrightarrow .
- Quantifiers \exists , \forall .
- Parenthesis '(', ')', and comma ','.

Notation:

- x, y, z for variables.
- f, g for function symbols.
- ► *a*, *b*, *c* for constants.
- p, q for predicate symbols.

7/28

Terms

Definition

- A variable is a term.
- If t_1, \ldots, t_n are terms and $f \in \mathcal{F}^n$, then $f(t_1, \ldots, t_n)$ is a term.
- Nothing else is a term.

Notation:

• s, t, r for terms.

Example

- *plus*(*plus*(*x*, 1), *x*) is a term, where *plus* is a binary function symbol, 1 is a constant, *x* is a variable.
- *father*(*father*(*John*)) is a term, where *father* is a unary function symbol and *John* is a constant.

Formulas

Definition

- ▶ If $t_1, ..., t_n$ are terms and $p \in \mathcal{P}^n$, then $p(t_1, ..., t_n)$ is a formula. It is called an atomic formula.
- If A is a formula, $(\neg A)$ is a formula.
- If *A* and *B* are formulas, then $(A \lor B)$, $(A \land B)$, $(A \Rightarrow B)$, and $(A \Leftrightarrow B)$ are formulas.
- ▶ If *A* is a formula, then $(\exists x.A)$ and $(\forall x.A)$ are formulas.
- Nothing else is a formula.

Notation:

► A, B for formulas.

Eliminating Parentheses

- Excessive use of parentheses often can be avoided by introducing binding order.
- ▶ \neg , \forall , \exists bind stronger than \lor .
- \lor binds stronger than \land .
- \land binds stronger than \Rightarrow and \Leftrightarrow .
- Furthermore, omit the outer parentheses and associate ∨, ∧, ⇒, ⇔ to the right.

Eliminating Parentheses

Example

The formula

 $(\forall y.(\forall x.((p(x)) \land (\neg r(y))) \Rightarrow ((\neg q(x)) \lor (A \lor B)))))$

due to binding order can be rewritten into

 $(\forall y.(\forall x.(p(x) \land \neg r(y) \Rightarrow \neg q(x) \lor (A \lor B))))$

which thanks to the convention of the association to the right and omitting the outer parentheses further simplifies to

 $\forall y.\forall x.(p(x) \land \neg r(y) \Rightarrow \neg q(x) \lor A \lor B).$

Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

 $\forall x.(rational(x) \Rightarrow real(x))$

2. There exists a number that is prime.

 $\exists x. prime(x)$

3. For every number *x*, there exists a number *y* such that x < y.

$$\forall x. \exists y. x < y$$

Assume:

- rational, real, prime: unary predicate symbols.
- <: binary predicate symbol.</p>

Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor is 0.

 $\neg \exists x.zero \doteq succ(x)$

2. For each natural number there exists exactly one immediate successor natural number.

 $\forall x. \exists y. (y \doteq succ(x) \land \forall z. (z \doteq succ(x) \Rightarrow y \doteq z))$

3. For each nonzero natural number there exists exactly one immediate predecessor natural number.

 $\forall x.(\neg(x \doteq zero) \Rightarrow \exists y.(y \doteq pred(x) \land \forall z.(z \doteq pred(x) \Rightarrow y \doteq z)))$

Assume:

- zero: constant
- succ, pred: unary function symbols.
- \doteq : binary predicate symbol.

13/28

Semantics

- Meaning of a first-order language consists of an universe and an appropriate meaning of each symbol.
- This pair is called structure.
- Structure fixes interpretation of function and predicate symbols.
- Meaning of variables is determined by a variable assignment.
- Interpretation of terms and formulas.

Structure

- Structure: a pair (D, I).
- \triangleright *D* is a nonempty universe, the domain of interpretation.
- I is an interpretation function defined on D that fixes the meaning of each symbol associating
 - ▶ to each $f \in \mathcal{F}^n$ an *n*-ary function $f_I : D^n \to D$, (in particular, $c_I \in D$ for each constant *c*)
 - to each $p \in \mathcal{P}^n$ different from \doteq , an *n*-ary relation p_I on *D*.

Variable Assignment

- A structure S = (D, I) is given.
- Variable assignment σ_S maps each x ∈ V into an element of D: σ_S(x) ∈ D.
- Given a variable *x*, an assignment ϑ_S is called an *x*-variant of σ_S iff $\vartheta_S(y) = \sigma_S(y)$ for all $y \neq x$.

Interpretation of Terms

- A structure S = (D, I) and a variable assignment σ_S are given.
- ▶ Value of a term *t* under S and σ_S , $Val_{S,\sigma_S}(t)$:
 - $Val_{\mathcal{S},\sigma_{\mathcal{S}}}(x) = \sigma_{\mathcal{S}}(x).$
 - $\lor Val_{\mathcal{S},\sigma_{\mathcal{S}}}(f(t_1,\ldots,t_n)) = f_I(Val_{\mathcal{S},\sigma_{\mathcal{S}}}(t_1),\ldots,Val_{\mathcal{S},\sigma_{\mathcal{S}}}(t_n)).$

Interpretation of Formulas

- A structure S = (D, I) and a variable assignment σ_S are given.
- Value of an atomic formula under S and σ_S is one of *true*, *false*:
 - $Val_{\mathcal{S},\sigma_{\mathcal{S}}}(s \doteq t) = true \text{ iff } Val_{\mathcal{S},\sigma_{\mathcal{S}}}(s) = Val_{\mathcal{S},\sigma_{\mathcal{S}}}(t).$
 - $Val_{\mathcal{S},\sigma_{\mathcal{S}}}(p(t_1,\ldots,t_n)) = true \text{ iff}$ $(Val_{\mathcal{S},\sigma_{\mathcal{S}}}(t_1),\ldots,Val_{\mathcal{S},\sigma_{\mathcal{S}}}(t_n)) \in p_I.$

Interpretation of Formulas

- A structure S = (D, I) and a variable assignment σ_S are given.
- Values of compound formulas under S and σ_S are also either *true* or *false*:
 - $Val_{\mathcal{S},\sigma_{\mathcal{S}}}(\neg A) = true \text{ iff } Val_{\mathcal{S},\sigma_{\mathcal{S}}}(A) = false.$
 - Val_{S,σS} (A ∨ B) = true iff Val_{S,σS} (A) = true or Val_{S,σS} (B) = true.
 Val_{S,σS} (A ∧ B) = true iff Val_{S,σS} (A) = true and Val_{S,σS} (B) = true.
 Val_{S,σS} (A ⇒ B) = true iff Val_{S,σS} (A) = false or Val_{S,σS} (B) = true.
 Val_{S,σS} (A ⇔ B) = true iff Val_{S,σS} (A) = Val_{S,σS} (B).
 Val_{S,σS} (∃x.A) = true iff
 - $Val_{\mathcal{S},\vartheta_{\mathcal{S}}}(A) = true$ for some *x*-variant $\vartheta_{\mathcal{S}}$ of $\sigma_{\mathcal{S}}$.
 - ► $Val_{S,\sigma_S}(\forall x.A) = true \text{ iff}$ $Val_{S,\vartheta_S}(A) = true \text{ for all } x\text{-variants } \vartheta_S \text{ of } \sigma_S.$

Interpretation of Formulas

- A structure S = (D, I) is given.
- The value of a formula A under S is either *true* or *false*:
 - $Val_{\mathcal{S}}(A) = true \text{ iff } Val_{\mathcal{S}}, \sigma_{\mathcal{S}}(A) = true \text{ for all } \sigma_{\mathcal{S}}.$
- S is called a model of A iff $Val_{S}(A) = true$.
- Written $\models_{\mathcal{S}} A$.

19/28

Example

- Formula: $\forall x.(p(x) \Rightarrow q(f(x), a))$
- Define $\mathcal{S} = (D, I)$ as
 - $D = \{1, 2\},$
 - $a_I = 1$,
 - $f_I(1) = 2, f_I(2) = 1,$
 - $p_I = \{2\},$
 - $q_I = \{(1,1), (1,2), (2,2)\}.$
- If $\sigma_{\mathcal{S}}(x) = 1$, then $Val_{\mathcal{S},\sigma_{\mathcal{S}}}(\forall x.(p(x) \Rightarrow q(f(x), a))) = true$.
- If $\sigma_{\mathcal{S}}(x) = 2$, then $Val_{\mathcal{S},\sigma_{\mathcal{S}}}(\forall x.(p(x) \Rightarrow q(f(x), a))) = true$.

• Hence,
$$\vDash_{\mathcal{S}} A$$
.

Validity, Unsatisfiability

- A formula A is valid, if $\vDash_{S} A$ for all S.
- Written $\models A$.
- A formula A is unsatisfiable, if $\vDash_{\mathcal{S}} A$ for no \mathcal{S} .
- If A is valid, then $\neg A$ is unsatisfiable and vice versa.
- The notions extend to (multi)sets of formulas.
- For $\{A_1, \ldots, A_n\}$, just formulate them for $A_1 \wedge \cdots \wedge A_n$.

21/28

Validity, Unsatisfiability

Valid	Non-valid sat	Unsat
-------	------------------	-------

- $\forall x.p(x) \Rightarrow \exists y.p(y) \text{ is valid.}$
- ▶ $p(a) \Rightarrow \neg \exists x.p(x)$ is satisfiable non-valid.
- ▶ $\forall x.p(x) \land \exists y. \neg p(y)$ is unsatisfiable.

23/28

Logical Consequence

Definition

A formula *A* is a logical consequence of the formulas B_1, \ldots, B_n , if every model of $B_1 \land \cdots \land B_n$ is a model of *A*.

Example

- mortal(socrates) is a logical consequence of $\forall x.(person(x) \Rightarrow mortal(x))$ and person(socrates).
- *cooked*(*apple*) is a logical consequence of $\forall x.(\neg cooked(x) \Rightarrow tasty(x))$ and $\neg tasty(apple)$.
- genius(einstein) is not a logical consequence of $\exists x.person(x) \land genius(x)$ and person(einstein).

Logic Programs

- Logic programs: finite non-empty sets of formulas of a special form, called program clauses.
- Program clause:

 $\forall x_1 \ldots \forall x_k. B_1 \land \cdots \land B_n \Rightarrow A,$

where

- ► $k, n \ge 0$,
- ► A and the B's are atomic formulas,
- x_1, \ldots, x_k are all the variables which occur in A, B_1, \ldots, B_n .
- Usually written in the inverse implication form without quantifiers and conjunctions:

$$A \Leftarrow B_1, \ldots, B_n$$

25/28

Goal

Goals or queries of logic programs: formulas of the form

 $\exists x_1....\exists x_k. B_1 \wedge \cdots \wedge B_n,$

where

- $k, n \ge 0$,
- ▶ the *B*'s are atomic formulas,
- x_1, \ldots, x_k are all the variables which occur in B_1, \ldots, B_n .
- Usually written without quantifiers and conjunction:

 B_1,\ldots,B_n

The problem is to find out whether a goal is a logical consequence of the given logic program or not.

The Problem and the Idea

- Let P be a program and G be a goal.
- Problem: Is G a logical consequence of P?
- Idea: Try to show that the set of formulas P ∪ {¬G} is inconsistent.
- How? This we will learn in this course.

Example

Let P consist of the two clauses:

- $\forall x.mortal(x) \Leftarrow person(x)$.
- ▶ person(socrates).

Goal: $G = \exists x.mortal(x)$.

 $\neg G$ is equivalent to $\forall x. \neg mortal(x)$.

The set

 $\{\forall x.mortal(x) \Leftarrow person(x), person(socrates), \forall x.\neg mortal(x)\}$

is inconsistent.

Hence, G is a logical consequence of P.

We can even compute the witness term for the goal:

x = socrates.

How? This we will learn in this lecture.