
Logic Programming
Examples

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

Contents

Repeat

Solving Logic Puzzles

Findall

Graph Search

repeat

I An extra way to generate multiple solutions through
backtracking.

I Comes as a built-in.
I Easy to define:

repeat.
repeat :- repeat.

repeat

Effect:
I If placed in a goal, repeat will succeed because of the

first fact.
I If after some time backtracking reaches this point in the

goal again, the rule for repeat will be tried.
I The rule generates the goal repeat, which will be

satisfied by the first fact.
I If backtracking reaches here again, Prolog will again use

the rule it used the fact before.
I To satisfy the generated repeat goal, it will use the fact

again, and so on.

repeat.
repeat :- repeat.

How to use repeat

I repeat can be useful to organize an interaction with the
user.
interact :-

repeat,
write(’Please enter an integer.

To stop, type ’stop’.’), nl,
read(I),

do_something_with_I(I),
!.

do_something_with_I(stop) :-
!.

do_something_with_I(I) :-
integer(I),
...
!,
fail.

Solving Logic Puzzles

I Logic grid puzzles.
I Given: The set-up to a scenario and certain clues.
I Goal: To find an object (e.g. who owns zebra), or to fill in

the missing knowledge.
I Usually given in the form of a grid to be filled in.

Solving Logic Puzzles

I Logic grid puzzles can be easily solved by logic
programming.

I Idea: generate-and-test.
I Generate a possible solution.
I Test whether it is really a solution (whether it satisfies all

the constraints imposed by the puzzle).
I If yes, finish.
I If not, generate another possible solution and test again.
I And so on.

Solving Logic Puzzles

Example (From www.logic-puzzles.org)

I Figure out the reservation, first name, superhero and
language for each person using the clues given.

I Reservations: 5:00pm, 5:30pm, 6:30pm, 7:00pm
I First Names: Caleb, Emanuel, Johnathan, Karen
I Superheros: Batman, Hellboy, Iron Man, Spiderman
I Languages: ASP, Cold Fusion, PHP, Python

Solving Logic Puzzles

Example (Cont.)

Clues:

1. The Batman fan is not Caleb.

2. Of Karen and Caleb, one specializes in PHP applications and
the other has the 5:30pm reservation.

3. The Hellboy fan has an earlier reservation than the PHP
programmer.

4. Emanuel isn’t well-versed in Python or Cold Fusion.

5. The person with a reservation at 7:00pm specializes in Cold
Fusion applications.

6. The Spiderman fan is Karen.

Solving Logic Puzzles

Example (Cont.)

Clues:

7. The ASP programmer doesn’t care for Spiderman and is not
Karen.

8. Either the Cold Fusion programmer or the PHP programmer
collects anything even remotely related to Iron Man.

9. Caleb doesn’t care for Iron Man and doesn’t have the 6:30pm
reservation.

10. The ASP programmer is not Johnathan.

11. The PHP programmer doesn’t care for Iron Man.

12. The Spiderman fan has an earlier reservation than the Cold
Fusion programmer.

Solving Logic Puzzles

I To generate a possible solution, the information about
reservations, first names, superheros, and languages are
used.

I Clues are for testing.
I The program should follow this structure.

See the program at the course Web page.

http://www.risc.jku.at/education/courses/ws2014/logic-programming/programs/puzzle.pro

Findall

Determine all the terms that satisfy a certain predicate.

findall(X,Goal,L): Succeeds if L is the list of all those X’s
for which Goal holds.

Example
?- findall(X, member(X,[a,b,a,c]), L).

L = [a,b,a,c]

?- findall(X, member(X,[a,b,a,c]), [a,b,c]).

false.

More Examples on Findall

Example
?- findall(X, member(5,[a,b,a,c]), L).

L = []

?- findall(5, member(X,[a,b,a,c]), L).

L = [5,5,5,5]

More Examples on Findall

Example
?- findall(5, member(a,[a,b,a,c]), L).

L = [5,5]

?- findall(5, member(5,[a,b,a,c]), L).

L = []

Implementation of Findall

findall is a built-in predicate.

However, one can implement it in PROLOG as well:

findall(X, G, _) :-
asserta(found(mark)),
call(G),
asserta(found(X)),
fail.

findall(_, _, L) :-
collect_found([], M),
!,
L=M.

Implementation of Findall, Cont.

collect_found(S, L) :-
getnext(X),
!,
collect_found([X|S], L).

collect_found(L,L).

getnext(X) :-
retract(found(X)),
!,
X \== mark.

Sample Runs

?- findall(X, member(X,[a,b,c]), L).

L = [a,b,c]

?- findall(X, append(X,Y,[a,b,c]), L).

L = [[],[a],[a,b],[a,b,c]]

?- findall([X,Y], append(X,Y,[a,b,c]), L).

L = [[[],[a,b,c]], [[a],[b,c]], [[a,b],[c]],
[[a,b,c],[]]]

Representing Graphs

a(g,h).
a(g,d).
a(e,d).
a(h,f).
a(e,f).
a(a,e).
a(a,b).
a(b,f).
a(b,c).
a(f,c).

Moving Through Graph

Simple program for searching the graph:

I go(X, X).
go(X, Y) :- a(X, Z),go(Z, Y).

I Drawback: For cyclic graphs it will loop.
I Solution: Keep trial of nodes visited.

Improved Program for Graph Searching

go(X, Y, T): Succeeds if one can go from node X to node Y.
T contains the list of nodes visited so far.

go(X, X, T).
go(X, Y, T) :-

a(X, Z),
legal(Z, T),
go(Z, Y, [Z|T]).

legal(X, []).
legal(X, [H|T]) :-

X \= H,
legal(X, T).

Car Routes

a(newcastle, carlisle).
a(carlisle, penrith).
a(darlington, newcastle).
a(penrith, darlington).
a(workington, carlisle).

a(workington, penrith).

Car Routes Program

go(Start, Dest, Route) :-
go0(Start, Dest, [], R),
reverse(R, Route).

go0(X, X, T, [X|T]).
go0(Place, Dest, T, Route) :-

legalnode(Place, T, Next),
go0(Next, Dest, [Place|T], Route).

Car Routes Program, Cont.

legalnode(X, Trail, Y) :-
(a(X, Y) ; a(Y, X)),
legal(Y, Trail).

legal(_, []).
legal(X, [H|T]) :-

X \= H,
legal(X, T).

reverse(L1, L2) :- reverse(L1, [], L2).

reverse([X|L], L2, L3) :-
reverse(L, [X|L2], L3)

reverse([], L, L).

Runs

?- go(darlington, workington, X).

X = [darlington,newcastle,carlisle,
penrith,workington];

X = [darlington,newcastle,carlisle,
workington];

X = [darlington,penrith,carlisle,workington];

X = [darlington,penrith,workington];

false.

Deficiencies of the Program

I Can not survey the complete list of possibilities.
I Remained options are implicit in the backtracking structure

of Prolog.
I They are not explicit in the structure that the program

examines.
I We try to come up with a more general-purpose solution.

Findall Paths

go(Start, Dest, Route) :-
go1([[Start]], Dest, R),
reverse(R, Route).

go1([First|Rest], Dest, First) :-
First = [Dest|_].

go1([[Last|Trail]|Others], Dest, Route) :-
findall([Z,Last|Trail],

legalnode(Last,Trail,Z),
List),

append(List, Others, NewRoutes),
go1(NewRoutes, Dest, Route).

Depth First

?- go(darlington, workington, X).

X = [darlington,newcastle,
carlisle,penrith,workington];

X = [darlington,newcastle,
carlisle,workington];

X = [darlington,penrith,
carlisle,workington];

X = [darlington,penrith,workington];

false.

Depth, Breadth First

go1([[Last|Trail]|Others], Dest, Route]:-
findall([Z,Last|Trail],

legalnode(Last,Trail,Z),
List),

append(List,Others,NewRoutes),
go1(NewRoutes,Dest,Route).

go1([[Last|Trail]|Others],Dest,Route]:-
findall([Z,Last|Trail],

legalnode(Last,Trail,Z),
List),

append(Others,List,NewRoutes),
go1(NewRoutes,Dest,Route).

Breadth First

?- go(darlington,workington,X).

X = [darlington,penrith,workington];

X = [darlington,newcastle,
carlisle,workington];

X = [darlington,penrith,
carlisle,workington];

X = [darlington,newcastle,
carlisle,penrith,workington];

false.

	Repeat
	Solving Logic Puzzles
	Findall
	Graph Search

