Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria
kutsia@risc. jku.at



Contents

Substitutions

Unifiers

Unification Algorithm



Unification

Unification algorithm: The heart of the computation model of
logic programs.



Substitution

Definition (Substitution)
A substitution is a finite set of the form

0:{V1l—)t1,...,vnl—>l‘n}

» v;’s: distinct variables.
> 1;’s: terms with #; # v;.
» Binding: v; — ;.



Substitution Application

Definition (Substitution application)
Substitution § = {v; — #1,...,v, — t,} applied to an expression
E,

EO

Simultaneously replacing each occurrence of v; in E with ;.

EQ is called the instance of E wrt 6.

E| is more general than E; if E, is an instance of E; (wrt some
substitution).



Substitution Application

Example (Application)

E = p(x,y.f(a)).
0 ={y+— x,x— b}.

EO = p(b,x,f(a)).

Note that x was not replaced second time.



Composition

Definition (Substitution Composition)
Given two substitutions

Qz{letl,...,vnl—)tn}
o={uy = Sty Uy S},

their composition 6o is obtained from the set

{V] = 1O,...,V, — 1,0,
UL F> STy eeey Uy > S}
by deleting
» all u; — s;'s with u; € {Vl, R ,vn},

» all v; = t;,0's with v; = ri0.



Substitution Composition

Example (Composition)

0={x—=f().y—z}
o={x—a,y— bz y}
o = {x— f(b),z—y}.



Empty Substitution

Empty substitution, denoted ¢:

» Empty set of bindings.
» Eec = E for all expressions E.



Properties

Theorem



Example (Properties)

Example

Given:
0={x—f(),y z}.
o={x—a,z— b}.
E=p(x,y,8(2)).

Then

0o = {x—f(y),y — b,z — b}.
EQ = p(f(y), 2 8(2))-

(E0)o = p(f(y), b, g(D)).

E(0o) =p(f(y), b, g(b)).



Renaming Substitution

Definition (Renaming Substitution)

{x1 = y1,...,x, = Yo} IS @ renaming substitution iff y;’s are
distinct variables.



Renaming an Expression

Definition (Renaming Substitution for an Expression)
Let V be the set of variables of an expression E.

A substitution
0 ={x1 = Y1, .. X0 = Y}
is a renaming substitution for E iff
» @ is a renaming substitution, and
» {x1,...,x,} CV,and
> (V\{x1,. ) Ny, ynp = 0.



Renaming an Expression

Example

>

>

>

>

E=f(x,a,y,z)

o1 ={x— uy,y— up,z — uz} is a renaming subst. for E.
oy = {x— uy,y — up} is a renaming subst. for E.

o3 = {x —y,y — x,z — u} is a renaming subst. for E.

o4 = {x — y,z+ u} is not a renaming subst. for E.

os = {x — u,y — u,z — u} is not a renaming subst.



Variants

Definition (Variant)
Expression E and expression F are variants iff there exist
substitutions # and ¢ such that

» £ = F and
» Fo=E.



Variants and Renaming

Theorem
Expression E and expression F are variants iff there exist
renaming substitutions 6 and o such that

» E0 = F and
» Fo=F.



Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution 6 is more general than a substitution o, written
f < o, iff there exists a substitution A such that

o\ =o.

The relation < on substitutions is called the instantiation
quasi-ordering.



Instantiation Quasi-Ordering

Example (More General)
Let 0 and o be the substitutions:

0 = {x|—>y,u '_>f(yaz)}3
o={x—=z,y—zu—f(z,2)}

Then 6 < ¢ because 6\ = o where

A={y—z}.



Unifier

Definition (Unifier of Expressions)
A substitution 6 is a unifier of expressions E and F iff

EO = F0.



Unifier

Example (Unifier of Expressions)
Let £ and F be two expressions:

E :f(x,b,g(z)),
F=f(f(y),y,8u)).

Then 6 = {x — f(b),y — b,z — u} is a unifier of E and F:

E =f(f(b), b, g(u)),
FO = f(f(b),b,g(u)).



Unification Problem, Unifier

Definition (Unification Problem)
Unification problem is a finite set of equations (expression
pairs).

Definition (Unifier)
o is a unifier of a unification problem

{E, £F,...,E, = F,}
iff o is a unifier of E; and F; foreach 1 <i < n, i.e., iff

Ela = F]O',
)

E,c =F,0o



Most General Unifier

Definition (MGU)
A unifier 6 of E and F is most general iff 6 is more general than
any other unifier of £ and F.



Unifiers and MGuU

Example (Unifiers)
Let E and F be two expressions:

E = f(x,b,8(z)),
F=f(f©),y gu)).

Unifiers of E and F (infinitely many):

01 ={x—f(b),y— b,z u},
0y = {x+— f(b),y — b,ur z},
03 = {x— f(b),y = b,z a,u— a},
Oy = {x—f(b),y— b,z u,w+— d},



Unifiers and MGuU

Example (MGU)
Let E and F be expressions from the previous example:

E=f(x,b,8(2), F =f(f(»),y,8(u)).
MGU’s of E and F:

01 = {x = f(b),y = b,z u},
0, = {x—f(b),y — byur z}.

91 SQQZ 92:91>\1 with )\1 :{ul—>z}.
92 < 91: 91 = 02)\2 with )\2 = {Z — u}

Note: \; and \, are renaming substitutions.



Equivalence of mgu-s

Theorem
Most general unifier of two expressions is unique up to variable
renaming



Unification Algorithm

Rule-based approach.
» General form of rules:

P, 0= Q; 0 or
P; o= 1.

» 1 denotes failure.
» o and # are substitutions.
» P and Q are unification problems: {E; = F,...,E, = F,}.



Unification Rules

Trivial:
{s=s5}UP; 0 =P, 0.

Decomposition:

{f(sl,...,sn) ?:f(ll,...,l‘n)}UP/; o —>
{S] ?:tl,...,sn ?:l‘n}UP,; o.

if £ (51, 8m) £t ).
Symbol Clash:

{51y s) Z g(tt, .. tw) Y UP; 0 => L.
itf # g



Unification Rules (Contd.)

Orient:
{tZx}UP; 0= {x=t}UP; o,
if 7 is not a variable.
Occurs Check:
{xZtJUP; 0 = 1,
if x occurs inr and x # t.
Variable Elimination:
{xE=tyUP; 0 = P'O; 00,

if x does not occur inz, and 6 = {x +— t}.



Unification Algorithm

In order to unify expressions E; and E»:
1. Create initial system {E; = E»};e.
2. Apply successively unification rules.



Termination

Theorem (Termination)
The unification algorithm terminates either with | or with (); o.



Soundness

Theorem (Soundness)
If P; e =T 0; o then o is a unifier of P.



Completeness

Theorem (Completeness)

For any unifier 6 of P the unification algorithm finds a unifier o of
P such thato < 0.



Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm
computes their MGU.



Examples

Example (Failure)
Unify p(f(a), g(x)) and p(y, y).

{p(f(a),e(x)) = p(»,3)}; € =Dec
{(a) y,8(x) =y} e =or
{y =f(a),g(x) = y}; e =vael

{g(x) =f(@)}; {y = f(a)} = symal

L



Examples

Example (Success)
Unify p(a, x,h(g(z))) and p(z, h(y), h(y)).

{p(a,x,h(g(2))) = p(z, h(y),h(y))}; € = Dec
{a=z,x=h(y),h(g(z)) = h()}; e =or

{z= a,x = h(y),h(g(2)) = h(y)}; € =>varEl

{x = h(y), h(g(a)) = h(y)}; {z+— a} =>vae
{n(g(@)) = h(y)}; {z+ a,x = h(y)} =>Dec
{g(a) =y} {z = a,x = h(y)} =0

{y = gla)}; {z—a,x = h(y)} = var
0; {z— a,x+— h(g(a)),y — g(a)}.



Examples

Example (Failure)
Unify p(x,x) and p(y,f(y)).

{p(x,x) = p(y,f(»))}; € =>Dec
{xZy,xZf(0)} € =vam

{y =} {x— y} = 0ccch
1



Previous Example on PROLOG

Example (Infinite Terms)
- p (X, X)=p (Y, £(Y)).

X = f(+x), ¥ = £(xx).
In some versions of PROLOG output looks like this:
X = £(E(E(E(E(E(E(E(E(E(..2))))))))))

Y = £(E(E(E(E(E(E(E(E(E(...))))))))))



Occurrence Check

PRoOLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.



Occurrence Check

Example
less (X,s (X)) .
foo:-less (s (Y),Y).

?- foo.

Yes



	Substitutions
	Unifiers
	Unification Algorithm

