Logic Programming
 Unification

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria
kutsia@risc.jku.at

Contents

Substitutions

Unifiers

Unification Algorithm

Unification

Unification algorithm: The heart of the computation model of logic programs.

Substitution

Definition (Substitution)

A substitution is a finite set of the form

$$
\theta=\left\{v_{1} \mapsto t_{1}, \ldots, v_{n} \mapsto t_{n}\right\}
$$

- v_{i} 's: distinct variables.
- t_{i} 's: terms with $t_{i} \neq v_{i}$.
- Binding: $v_{i} \mapsto t_{i}$.

Substitution Application

Definition (Substitution application)
Substitution $\theta=\left\{v_{1} \mapsto t_{1}, \ldots, v_{n} \mapsto t_{n}\right\}$ applied to an expression E,

E θ
Simultaneously replacing each occurrence of v_{i} in E with t_{i}.
$E \theta$ is called the instance of E wrt θ.
E_{1} is more general than E_{2} if E_{2} is an instance of E_{1} (wrt some substitution).

Substitution Application

Example (Application)

$$
\begin{aligned}
E & =p(x, y, f(a)) . \\
\theta & =\{y \mapsto x, x \mapsto b\} . \\
E \theta & =p(b, x, f(a))
\end{aligned}
$$

Note that x was not replaced second time.

Composition

Definition (Substitution Composition)

Given two substitutions

$$
\begin{aligned}
\theta & =\left\{v_{1} \mapsto t_{1}, \ldots, v_{n} \mapsto t_{n}\right\} \\
\sigma & =\left\{u_{1} \mapsto s_{1}, \ldots, u_{m} \mapsto s_{m}\right\}
\end{aligned}
$$

their composition $\theta \sigma$ is obtained from the set

$$
\begin{gathered}
\left\{v_{1} \mapsto t_{1} \sigma, \ldots, v_{n} \mapsto t_{n} \sigma\right. \\
\left.u_{1} \mapsto s_{1}, \ldots, u_{m} \mapsto s_{m}\right\}
\end{gathered}
$$

by deleting

- all $u_{i} \mapsto s_{i}$'s with $u_{i} \in\left\{v_{1}, \ldots, v_{n}\right\}$,
- all $v_{i} \mapsto t_{i} \sigma$'s with $v_{i}=t_{i} \sigma$.

Substitution Composition

Example (Composition)

$$
\begin{aligned}
\theta & =\{x \mapsto f(y), y \mapsto z\} \\
\sigma & =\{x \mapsto a, y \mapsto b, z \mapsto y\} \\
\theta \sigma & =\{x \mapsto f(b), z \mapsto y\}
\end{aligned}
$$

Empty Substitution

Empty substitution, denoted ε :

- Empty set of bindings.
- $E \varepsilon=E$ for all expressions E.

Properties

Theorem

$$
\begin{aligned}
\theta \varepsilon & =\varepsilon \theta=\theta . \\
(E \theta) \sigma & =E(\theta \sigma) . \\
(\theta \sigma) \lambda & =\theta(\sigma \lambda) .
\end{aligned}
$$

Example (Properties)

Example

Given:

$$
\begin{aligned}
& \theta=\{x \mapsto f(y), y \mapsto z\} . \\
& \sigma=\{x \mapsto a, z \mapsto b\} . \\
& E=p(x, y, g(z)) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \sigma & =\{x \mapsto f(y), y \mapsto b, z \mapsto b\} . \\
E \theta & =p(f(y), z, g(z)) . \\
(E \theta) \sigma & =p(f(y), b, g(b)) . \\
E(\theta \sigma) & =p(f(y), b, g(b)) .
\end{aligned}
$$

Renaming Substitution

Definition (Renaming Substitution)
$\left\{x_{1} \mapsto y_{1}, \ldots, x_{n} \mapsto y_{n}\right\}$ is a renaming substitution iff y_{i} 's are distinct variables.

Renaming an Expression

Definition (Renaming Substitution for an Expression)
Let V be the set of variables of an expression E.
A substitution

$$
\theta=\left\{x_{1} \mapsto y_{1}, \ldots, x_{n} \mapsto y_{n}\right\}
$$

is a renaming substitution for E iff

- θ is a renaming substitution, and
- $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq V$, and
- $\left(V \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \cap\left\{y_{1}, \ldots, y_{n}\right\}=\emptyset$.

Renaming an Expression

Example

- $E=f(x, a, y, z)$
- $\sigma_{1}=\left\{x \mapsto u_{1}, y \mapsto u_{2}, z \mapsto u_{3}\right\}$ is a renaming subst. for E.
- $\sigma_{2}=\left\{x \mapsto u_{1}, y \mapsto u_{2}\right\}$ is a renaming subst. for E.
- $\sigma_{3}=\{x \mapsto y, y \mapsto x, z \mapsto u\}$ is a renaming subst. for E.
- $\sigma_{4}=\{x \mapsto y, z \mapsto u\}$ is not a renaming subst. for E.
- $\sigma_{5}=\{x \mapsto u, y \mapsto u, z \mapsto u\}$ is not a renaming subst.

Variants

Definition (Variant)

Expression E and expression F are variants iff there exist substitutions θ and σ such that

- $E \theta=F$ and
- $F \sigma=E$.

Variants and Renaming

Theorem
Expression E and expression F are variants iff there exist renaming substitutions θ and σ such that

- $E \theta=F$ and
- $F \sigma=E$.

Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution θ is more general than a substitution σ, written
$\theta \leq \sigma$, iff there exists a substitution λ such that

$$
\theta \lambda=\sigma .
$$

The relation \leq on substitutions is called the instantiation quasi-ordering.

Instantiation Quasi-Ordering

Example (More General)

Let θ and σ be the substitutions:

$$
\begin{aligned}
\theta & =\{x \mapsto y, u \mapsto f(y, z)\} \\
\sigma & =\{x \mapsto z, y \mapsto z, u \mapsto f(z, z)\} .
\end{aligned}
$$

Then $\theta \leq \sigma$ because $\theta \lambda=\sigma$ where

$$
\lambda=\{y \mapsto z\} .
$$

Unifier

Definition (Unifier of Expressions)

A substitution θ is a unifier of expressions E and F iff

$$
E \theta=F \theta
$$

Unifier

Example (Unifier of Expressions)

Let E and F be two expressions:

$$
\begin{aligned}
& E=f(x, b, g(z)) \\
& F=f(f(y), y, g(u))
\end{aligned}
$$

Then $\theta=\{x \mapsto f(b), y \mapsto b, z \mapsto u\}$ is a unifier of E and F :

$$
\begin{aligned}
& E \theta=f(f(b), b, g(u)) \\
& F \theta=f(f(b), b, g(u))
\end{aligned}
$$

Unification Problem, Unifier

Definition (Unification Problem)

Unification problem is a finite set of equations (expression pairs).

Definition (Unifier)

σ is a unifier of a unification problem

$$
\left\{E_{1} \stackrel{?}{\stackrel{2}{2}} F_{1}, \ldots, E_{n} \stackrel{?}{=} F_{n}\right\}
$$

iff σ is a unifier of E_{i} and F_{i} for each $1 \leq i \leq n$, i.e., iff

$$
\begin{gathered}
E_{1} \sigma=F_{1} \sigma, \\
\cdots \\
E_{n} \sigma=F_{n} \sigma
\end{gathered}
$$

Most General Unifier

Definition (MGU)

A unifier θ of E and F is most general iff θ is more general than any other unifier of E and F.

Unifiers and MGU

Example (Unifiers)

Let E and F be two expressions:

$$
\begin{aligned}
& E=f(x, b, g(z)) \\
& F=f(f(y), y, g(u))
\end{aligned}
$$

Unifiers of E and F (infinitely many):

$$
\begin{aligned}
\theta_{1} & =\{x \mapsto f(b), y \mapsto b, z \mapsto u\}, \\
\theta_{2} & =\{x \mapsto f(b), y \mapsto b, u \mapsto z\}, \\
\theta_{3} & =\{x \mapsto f(b), y \mapsto b, z \mapsto a, u \mapsto a\}, \\
\theta_{4} & =\{x \mapsto f(b), y \mapsto b, z \mapsto u, w \mapsto d\},
\end{aligned}
$$

Unifiers and MGU

Example (MGU)

Let E and F be expressions from the previous example:

$$
E=f(x, b, g(z)), F=f(f(y), y, g(u)) \text {. }
$$

MGu's of E and F :

$$
\begin{aligned}
\theta_{1} & =\{x \mapsto f(b), y \mapsto b, z \mapsto u\}, \\
\theta_{2} & =\{x \mapsto f(b), y \mapsto b, u \mapsto z\}
\end{aligned}
$$

$\begin{array}{ll}\theta_{1} \leq \theta_{2}: & \theta_{2}=\theta_{1} \lambda_{1} \text { with } \lambda_{1}=\{u \mapsto z\} . \\ \theta_{2} \leq \theta_{1}: & \theta_{1}=\theta_{2} \lambda_{2} \text { with } \lambda_{2}=\{z \mapsto u\} .\end{array}$
Note: λ_{1} and λ_{2} are renaming substitutions.

Equivalence of mgu-s

Theorem
Most general unifier of two expressions is unique up to variable renaming

Unification Algorithm

Rule-based approach.

- General form of rules:

$$
\begin{aligned}
& P ; \sigma \Longrightarrow Q ; \theta \text { or } \\
& P ; \sigma \Longrightarrow \perp .
\end{aligned}
$$

- \perp denotes failure.
- σ and θ are substitutions.
- P and Q are unification problems: $\left\{E_{1} \stackrel{?}{=} F_{1}, \ldots, E_{n} \stackrel{?}{=} F_{n}\right\}$.

Unification Rules

Trivial:

$$
\{s \stackrel{?}{=} s\} \cup P^{\prime} ; \sigma \Longrightarrow P^{\prime} ; \sigma
$$

Decomposition:

$$
\begin{gathered}
\left\{f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right)\right\} \cup P^{\prime} ; \sigma \Longrightarrow \\
\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}\right\} \cup P^{\prime} ; \sigma .
\end{gathered}
$$

if $f\left(s_{1}, \ldots, s_{n}\right) \neq f\left(t_{1}, \ldots, t_{n}\right)$.
Symbol Clash:

$$
\left\{f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{m}\right)\right\} \cup P^{\prime} ; \sigma \Longrightarrow \perp
$$

if $f \neq g$.

Unification Rules (Contd.)

Orient:

$$
\{t \stackrel{?}{=} x\} \cup P^{\prime} ; \sigma \Longrightarrow\{x \stackrel{?}{=} t\} \cup P^{\prime} ; \sigma
$$

if t is not a variable.

Occurs Check:

$$
\{x \stackrel{?}{=} t\} \cup P^{\prime} ; \sigma \Longrightarrow \perp
$$

if x occurs in t and $x \neq t$.
Variable Elimination:

$$
\{x \stackrel{?}{=} t\} \cup P^{\prime} ; \sigma \Longrightarrow P^{\prime} \theta ; \sigma \theta
$$

if x does not occur in t, and $\theta=\{x \mapsto t\}$.

Unification Algorithm

In order to unify expressions E_{1} and E_{2} :

1. Create initial system $\left\{E_{1} \stackrel{?}{=} E_{2}\right\} ; \varepsilon$.
2. Apply successively unification rules.

Termination

Theorem (Termination)
The unification algorithm terminates either with \perp or with $\emptyset ; \sigma$.

Soundness

Theorem (Soundness)
If $P ; \varepsilon \Longrightarrow{ }^{+} \emptyset$; σ then σ is a unifier of P.

Completeness

Theorem (Completeness)
For any unifier θ of P the unification algorithm finds a unifier σ of P such that $\sigma \leq \theta$.

Major Result

Theorem (Main Theorem)
If two expressions are unifiable then the unification algorithm computes their MGU.

Examples

Example (Failure)

Unify $p(f(a), g(x))$ and $p(y, y)$.

$$
\begin{aligned}
&\{p(f(a), g(x)) \stackrel{2}{=} p(y, y)\} ; \varepsilon \Longrightarrow_{\mathrm{Dec}} \\
&\{f(a) \stackrel{?}{=} y, g(x) \stackrel{2}{=} y\} ; \varepsilon \Longrightarrow \mathrm{Or} \\
&\{y \stackrel{2}{=} f(a), g(x) \stackrel{?}{=} y\} ; \varepsilon \mathrm{VarEl} \\
&\left\{g(x)^{\stackrel{2}{=}} f(a)\right\} ;\{y \mapsto f(a)\} \Longrightarrow \mathrm{SymCl} \\
& \perp
\end{aligned}
$$

Examples

Example (Success)

Unify $p(a, x, h(g(z)))$ and $p(z, h(y), h(y))$.

$$
\begin{aligned}
&\{p(a, x, h(g(z))) \stackrel{?}{=} p(z, h(y), h(y))\} ; \varepsilon \Longrightarrow \mathrm{Dec} \\
&\{a \stackrel{?}{=} z, x \stackrel{?}{=} h(y), h(g(z)) \stackrel{?}{=} h(y)\} ; \varepsilon \Longrightarrow \mathrm{Or} \\
&\{z \stackrel{?}{=} a, x \stackrel{?}{=} h(y), h(g(z)) \stackrel{?}{=} h(y)\} ; \varepsilon \Longrightarrow \mathrm{VarEI} \\
&\{x \stackrel{?}{=} h(y), h(g(a)) \stackrel{?}{=} h(y)\} ;\{z \mapsto a\} \Longrightarrow \mathrm{VarEl} \\
&\{h(g(a)) \stackrel{?}{=} h(y)\} ;\{z \mapsto a, x \mapsto h(y)\} \Longrightarrow \mathrm{Dec} \\
& \quad\{g(a) \stackrel{?}{=} y\} ;\{z \mapsto a, x \mapsto h(y)\} \Longrightarrow \mathrm{Or} \\
& \quad\{y \stackrel{?}{=} g(a)\} ;\{z \mapsto a, x \mapsto h(y)\} \Longrightarrow \mathrm{VarEI} \\
& \emptyset ;\{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\} .
\end{aligned}
$$

Examples

Example (Failure)
Unify $p(x, x)$ and $p(y, f(y))$.

$$
\begin{aligned}
\{p(x, x) \stackrel{?}{=} p(y, f(y))\} ; & \varepsilon \Longrightarrow_{\mathrm{Dec}} \\
\{x \stackrel{?}{=} y, x \stackrel{?}{=} f(y)\} ; & \varepsilon \mathrm{VarEl} \\
\{y \stackrel{?}{=} f(y)\} ;\{x \mapsto y\} & \Longrightarrow \mathrm{OccCh} \\
\perp &
\end{aligned}
$$

Previous Example on Prolog

Example (Infinite Terms)
?- $p(X, X)=p(Y, f(Y))$.
$X=f(* *), Y=f(* *)$.

In some versions of Prolog output looks like this:
$X=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\ldots)))))))))$
$Y=f(f(f(f(f(f(f(f(f(f(\ldots)))))))))$

Occurrence Check

Prolog unification algorithm skips Occurrence Check.
Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

Example

less (X,s (X)) .
foo:-less (s (Y), Y).
?-foo.

Yes

