Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria
kutsialrisc.jku.at

Contents

Substitutions

Unifiers

Unification Algorithm

Unification

Unification algorithm: The heart of the computation model of
logic programs.

Substitution

Definition (Substitution)
A substitution is a finite set of the form

9:{V1Ht1,...,vnth}

» v;’s: distinct variables.
> t;'s: terms with #; # v;.
» Binding: v; — 1.

Substitution Application

Definition (Substitution application)
Substitution 6 = {v; — 1,...,v, — t,} applied to an expression

E,
EO

Simultaneously replacing each occurrence of v; in E with ¢;.

E0 is called the instance of E wrt 6.

E| is more general than E, if E; is an instance of E; (wrt some
substitution).

Substitution Application

Example (Application)

E = p(x,y.f(a)).
0 ={y~— x,x+— b}.

EO = p(b,x,f(a)).

Note that x was not replaced second time.

Composition

Definition (Substitution Composition)
Given two substitutions

0:{v1»—>t1,...,vn'—>tn}
o=A{uy = S1,... Uy S},

their composition 6o is obtained from the set

{vi = t10,...,vy — 1,0,
UL > STy ey lm > Sy}
by deleting
» all u; — s;'s with u; € {Vl, L. ,vn},

» all v; — t;,0's with v; = 1;0.

Substitution Composition

Example (Composition)

0={x—f0),y—z}
oc={x—a,y—b,z— y}.
fo = {x— f(b),z— y}.

Empty Substitution

Empty substitution, denoted «:

» Empty set of bindings.
» Ee = E for all expressions E.

Properties

Theorem

fc =0 =0.
(E0)o = E(0o).
(Bo)A = 0(c)).

Example (Properties)

Example

Given:
0 ={x—=f(),y z}.
o={x—a,z— b}.
E =p(x,y,8(2)).

Then

Oo = {x— f(y),y — b,z b}.

EO =p(f(y),z8
(EO)o =p(f(y), b, g
E(@O’) Zp(f(y),b,g

(2)).
(b)).
(b))

Renaming Substitution

Definition (Renaming Substitution)

{x1 = y1,...,x, — yn} is @ renaming substitution iff y;’s are
distinct variables.

Renaming an Expression

Definition (Renaming Substitution for an Expression)
Let V be the set of variables of an expression E.

A substitution
0 ={x1 = y1,...,Xn = Y}
is a renaming substitution for E iff
» 6 is a renaming substitution, and
» {x1,...,x,} CV,and
» (VN {x1,..) Ny, ynt = 0.

Renaming an Expression

Example

» E=f(x,a,y,z)

» o1 ={x— w1,y — ur,z— u3} is a renaming subst. for E.

» 0y = {x— u;,y — up} is a renaming subst. for E.

» 03 = {x—y,y— x,z+— u} is a renaming subst. for E.
» o4 = {x— y,z+— u} is not a renaming subst. for E.

» 05 = {x— u,y— u,z— u}is not a renaming subst.

Variants

Definition (Variant)
Expression E and expression F are variants iff there exist
substitutions ¢ and o such that

» E§ = F and
» Fo =E.

Variants and Renaming

Theorem
Expression E and expression F are variants iff there exist
renaming substitutions 6 and o such that

» EO0 = F and
» Fo=EFE.

Instantiation Quasi-Ordering Instantiation Quasi-Ordering

N . Example (More General)
Definition (More General Substitution) Let 0 and o be the substitutions:

A substitution 6 is more general than a substitution o, written

0 < o, iff there exists a substitution A\ such that 0={x—=yu—f(y,2)}

o={xr 2,y zu—f(z,2)}.

o)\ =o.
Then 8 < o because 0\ = o where

The relation < on substitutions is called the instantiation

quasi-ordering. A={y—z}.

Unifier Unifier
Example (Unifier of Expressions)
Let E and F be two expressions:
,E\) eszgg':ic:l:]tif)gr;ﬁilse;Tnli?‘/');el;)efseilorzss)sions E and F iff E=7lxb8(2))
g’ F = f(f(),y, 8(w)).

EO = F0. Then 0 = {x — f(b),y — b,z — u} is a unifier of E and F:

EQ =f(f(b),b, g(u)),
FO =f(f(b), b, g(u)).

Unification Problem, Unifier

Definition (Unification Problem)

Unification problem is a finite set of equations (expression

pairs).

Definition (Unifier)
o is a unifier of a unification problem

{E, £Fy,...,E, = F,}
iff o is a unifier of E; and F; foreach 1 <i <, i.e., iff

E10' :Fla,
)

E,oc =F,0

Most General Unifier

Definition (MGU)
A unifier 0 of E and F is most general iff 6 is more general than
any other unifier of E and F.

Unifiers and MGU

Example (Unifiers)
Let E and F be two expressions:

E :f(x,b,g(Z)),
F=ff(),y 8u)).

Unifiers of E and F (infinitely many):

01 ={x—f(b),y — b,z u},
0, = {x—f(b),y — buw z},
03 = {x—f(b),y = b,z— a,u— a},
Oy = {x—f(b),y = b,z— u,w— d},

Unifiers and MGU

Example (MGU)
Let E and F be expressions from the previous example:

E=f(x,b,8(2), F=f(f(»), 8(u)).
MGU’s of E and F:

th = {XHf(b),yl—) b,Z’—> l/t},
0y = {x = f(b),y — byu z}.

(91 < 621 92 = 91)\1 with)\1 = {u — Z}.
(92 < 61: 91 = 92)\2 with)\2 = {Z — u}.

Note: A\; and X, are renaming substitutions.

Equivalence of mgu-s

Theorem
Most general unifier of two expressions is unique up to variable
renaming

Unification Algorithm

Rule-based approach.

» General form of rules:

P, 0o = Q; 0 or
P;o— 1.

» 1 denotes failure.
» o and 0 are substitutions.

» P and Q are unification problems: {E; = F1, ...

s En

L F,}.

Unification Rules

Trivial:
{s=syUP; 0= P; 0.
Decomposition:

{f(s1y.ey8n) éf(tl,...,tn)}UP’; o=
{Sl étl,...,Sn étn}UP,; o.

iff(sl,...,sn) #f(l‘],...,l‘n>.
Symbol Clash:
{f(s1,..ysn) =gty tm) JUP; 0 = L.

itf #g.

Unification Rules (Contd.)

Orient:
{t=x}UP; o= {xZt}UP; o,
if is not a variable.
Occurs Check:
{xZtpuP; o= 1,
if x occurs in ¢t and x # r.
Variable Elimination:
{xZt}yUP; 0 = P'O; 00,

if x does not occur in ¢, and 6 = {x — ¢}.

Unification Algorithm

In order to unify expressions E; and E»:
1. Create initial system {E; = E,};e.

2. Apply successively unification rules.

Termination

Theorem (Termination)
The unification algorithm terminates either with L or with 0; c.

Soundness

Theorem (Soundness)
If P; e = (); o then o is a unifier of P.

Completeness

Theorem (Completeness)

For any unifier 6 of P the unification algorithm finds a unifier o of
P such thato < 6.

Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm
computes their MGU.

Examples

Example (Failure)
Unify p(f(a), g(x)) and p(y,y).

{p(f(a),s(x)) = p(y,»)}; € = Dec
{f(a) £y,8(x) =y} e =0
{y = f(a),g(x) =y} € =>vaml

{s(x) =f(@)}; {y = f(a)} =>sym
1

Examples

Example (Success)
Unify p(a,x, h(g(z))) and p(z, h(y), h(y)).

{p(a,x, h(g ())) = Pl h(y), h(y))}; € =pec
{azzx= h(), h(8(2) = h(y)}; € =>or
{z=a,x = h(y), h(s(z)) = h()}: € = varm

{x = h(y) h(g(a)) = h(y)}; {2 a} =>vare

{h(g(a)) = h(y)}; {z— a,x = h(y)} =>Dec
{g(a) =} {z—= a,x = h())} =0

{y =g(@)}; {z a,x = h(y)} = var
0; {z = a,x > h(g(a)),y — gla)}.

Examples

Example (Failure)
Unify p(x,x) and p(y,f(y)).

{p(x,x) = p(y,f())}; € =Dec
{xZy,x=f()}; e = vam

{y =70} {x =y} = 0ccch
I

Previous Example on PROLOG

Example (Infinite Terms)
= p (X, X)=p (Y, £(Y)).

X = £(xx), ¥ = £(xx).

In some versions of PROLOG output looks like this:

X = f(E(E(E(E(E(E(E(E(EC...))))))))))

Y = £(E(E(E(E(EEEEEC.))))))))))

Occurrence Check

PROLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

Example
less (X,s (X)) .
foo:-less(s(Y),Y).

?- foo.

Yes

	Substitutions
	Unifiers
	Unification Algorithm

