Logic Programming Unification

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria kutsia@risc.jku.at

Unification

Unification algorithm: The heart of the computation model of logic programs.

Contents

Substitutions

Unifiers

Unification Algorithm

Substitution

Definition (Substitution)

A substitution is a finite set of the form

$$\theta = \{v_1 \mapsto t_1, \dots, v_n \mapsto t_n\}$$

- v_i's: distinct variables.
- ▶ t_i 's: terms with $t_i \neq v_i$.
- ▶ Binding: $v_i \mapsto t_i$.

Substitution Application

Definition (Substitution application)

Substitution $\theta = \{v_1 \mapsto t_1, \dots, v_n \mapsto t_n\}$ applied to an expression E,

 $E\theta$

Simultaneously replacing each occurrence of v_i in E with t_i .

 $E\theta$ is called the *instance* of E wrt θ .

 E_1 is more general than E_2 if E_2 is an instance of E_1 (wrt some substitution).

Substitution Application

Example (Application)

$$E = p(x, y, f(a)).$$

$$\theta = \{y \mapsto x, x \mapsto b\}.$$

$$E\theta = p(b, x, f(a)).$$

Note that *x* was not replaced second time.

Composition

Definition (Substitution Composition)

Given two substitutions

$$\theta = \{v_1 \mapsto t_1, \dots, v_n \mapsto t_n\}$$

$$\sigma = \{u_1 \mapsto s_1, \dots, u_m \mapsto s_m\},$$

their *composition* $\theta\sigma$ is obtained from the set

$$\{v_1 \mapsto t_1 \sigma, \dots, v_n \mapsto t_n \sigma, u_1 \mapsto s_1, \dots, u_m \mapsto s_m\}$$

by deleting

- ightharpoonup all $u_i \mapsto s_i$'s with $u_i \in \{v_1, \dots, v_n\}$,
- ▶ all $v_i \mapsto t_i \sigma$'s with $v_i = t_i \sigma$.

Substitution Composition

Example (Composition)

$$\theta = \{x \mapsto f(y), y \mapsto z\}.$$

$$\sigma = \{x \mapsto a, y \mapsto b, z \mapsto y\}.$$

$$\theta\sigma = \{x \mapsto f(b), z \mapsto y\}.$$

Empty Substitution

Empty substitution, denoted ε :

- ► Empty set of bindings.
- ▶ $E\varepsilon = E$ for all expressions E.

Example (Properties)

Example

Given:

$$\theta = \{x \mapsto f(y), y \mapsto z\}.$$

$$\sigma = \{x \mapsto a, z \mapsto b\}.$$

$$E = p(x, y, g(z)).$$

Then

$$\theta\sigma = \{x \mapsto f(y), y \mapsto b, z \mapsto b\}.$$

$$E\theta = p(f(y), z, g(z)).$$

$$(E\theta)\sigma = p(f(y), b, g(b)).$$

$$E(\theta\sigma) = p(f(y), b, g(b)).$$

Properties

Theorem

$$\theta \varepsilon = \varepsilon \theta = \theta.$$

$$(E\theta)\sigma = E(\theta\sigma).$$

$$(\theta\sigma)\lambda = \theta(\sigma\lambda).$$

Renaming Substitution

Definition (Renaming Substitution)

 $\{x_1 \mapsto y_1, \dots, x_n \mapsto y_n\}$ is a *renaming substitution* iff y_i 's are distinct variables.

Renaming an Expression

Definition (Renaming Substitution for an Expression)

Let V be the set of variables of an expression E.

A substitution

$$\theta = \{x_1 \mapsto y_1, \dots, x_n \mapsto y_n\}$$

is a renaming substitution for E iff

- ightharpoonup heta is a renaming substitution, and
- $\{x_1,\ldots,x_n\}\subseteq V$, and
- $(V \setminus \{x_1, \ldots, x_n\}) \cap \{y_1, \ldots, y_n\} = \emptyset.$

Variants

Definition (Variant)

Expression E and expression F are *variants* iff there exist substitutions θ and σ such that

- \triangleright $E\theta = F$ and
- $ightharpoonup F\sigma = E$.

Renaming an Expression

Example

- $\blacktriangleright E = f(x, a, y, z)$
- $\sigma_1 = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_3\}$ is a renaming subst. for *E*.
- $\sigma_2 = \{x \mapsto u_1, y \mapsto u_2\}$ is a renaming subst. for *E*.
- $\sigma_3 = \{x \mapsto y, y \mapsto x, z \mapsto u\}$ is a renaming subst. for E.
- $ightharpoonup \sigma_4 = \{x \mapsto y, z \mapsto u\}$ is **not** a renaming subst. for *E*.
- $\sigma_5 = \{x \mapsto u, y \mapsto u, z \mapsto u\}$ is not a renaming subst.

Variants and Renaming

Theorem

Expression E and expression F are variants iff there exist renaming substitutions θ and σ such that

- ightharpoonup E heta=F and
- $ightharpoonup F\sigma = E$.

Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution θ is *more general* than a substitution σ , written $\theta \leq \sigma$, iff there exists a substitution λ such that

$$\theta \lambda = \sigma$$
.

The relation \leq on substitutions is called the *instantiation* quasi-ordering.

Unifier

Definition (Unifier of Expressions)

A substitution θ is a *unifier* of expressions E and F iff

$$E\theta = F\theta$$
.

Instantiation Quasi-Ordering

Example (More General)

Let θ and σ be the substitutions:

$$\theta = \{x \mapsto y, u \mapsto f(y, z)\},\$$

$$\sigma = \{x \mapsto z, y \mapsto z, u \mapsto f(z, z)\}.$$

Then $\theta \leq \sigma$ because $\theta \lambda = \sigma$ where

$$\lambda = \{ y \mapsto z \}.$$

Unifier

Example (Unifier of Expressions)

Let E and F be two expressions:

$$E = f(x, b, g(z)),$$

$$F = f(f(y), y, g(u)).$$

Then $\theta = \{x \mapsto f(b), y \mapsto b, z \mapsto u\}$ is a unifier of *E* and *F*:

$$E\theta = f(f(b), b, g(u)),$$

$$F\theta = f(f(b), b, g(u)).$$

Unification Problem, Unifier

Definition (Unification Problem)

Unification problem is a finite set of equations (expression pairs).

Definition (Unifier)

 σ is a unifier of a unification problem

$${E_1 \stackrel{?}{=} F_1, \ldots, E_n \stackrel{?}{=} F_n}$$

iff σ is a unifier of E_i and F_i for each $1 \le i \le n$, i.e., iff

$$E_1\sigma = F_1\sigma,$$

$$\cdots,$$

$$E_n\sigma = F_n\sigma$$

Unifiers and MGU

Example (Unifiers)

Let E and F be two expressions:

$$E = f(x, b, g(z)),$$

$$F = f(f(y), y, g(u)).$$

Unifiers of E and F (infinitely many):

$$\theta_{1} = \{x \mapsto f(b), y \mapsto b, z \mapsto u\},$$

$$\theta_{2} = \{x \mapsto f(b), y \mapsto b, u \mapsto z\},$$

$$\theta_{3} = \{x \mapsto f(b), y \mapsto b, z \mapsto a, u \mapsto a\},$$

$$\theta_{4} = \{x \mapsto f(b), y \mapsto b, z \mapsto u, w \mapsto d\},$$

Most General Unifier

Definition (MGU)

A unifier θ of E and F is *most general* iff θ is more general than any other unifier of E and F.

Unifiers and Mgu

Example (MGU)

Let *E* and *F* be expressions from the previous example:

$$E = f(x, b, g(z)), F = f(f(y), y, g(u)).$$

MGU's of E and F:

$$\theta_1 = \{x \mapsto f(b), y \mapsto b, z \mapsto u\},\$$

$$\theta_2 = \{x \mapsto f(b), y \mapsto b, u \mapsto z\}.$$

$$\theta_1 \le \theta_2$$
: $\theta_2 = \theta_1 \lambda_1 \text{ with } \lambda_1 = \{u \mapsto z\}.$
 $\theta_2 \le \theta_1$: $\theta_1 = \theta_2 \lambda_2 \text{ with } \lambda_2 = \{z \mapsto u\}.$

Note: λ_1 and λ_2 are renaming substitutions.

Equivalence of mgu-s

Theorem

Most general unifier of two expressions is unique up to variable renaming

Unification Rules

Trivial:

$$\{s \stackrel{?}{=} s\} \cup P'; \ \sigma \Longrightarrow P'; \ \sigma.$$

Decomposition:

$$\{f(s_1,\ldots,s_n)\stackrel{?}{=} f(t_1,\ldots,t_n)\} \cup P'; \ \sigma \Longrightarrow \{s_1\stackrel{?}{=} t_1,\ldots,s_n\stackrel{?}{=} t_n\} \cup P'; \ \sigma.$$

if
$$f(s_1,\ldots,s_n)\neq f(t_1,\ldots,t_n)$$
.

Symbol Clash:

$${f(s_1,\ldots,s_n)\stackrel{?}{=}g(t_1,\ldots,t_m)}\cup P';\ \sigma\Longrightarrow\bot.$$

if
$$f \neq g$$
.

Unification Algorithm

Rule-based approach.

General form of rules:

$$P; \ \sigma \Longrightarrow Q; \ \theta \ \text{ or }$$

$$P$$
; $\sigma \Longrightarrow \bot$.

- \triangleright σ and θ are substitutions.
- ▶ *P* and *Q* are unification problems: $\{E_1 \stackrel{?}{=} F_1, \dots, E_n \stackrel{?}{=} F_n\}$.

Unification Rules (Contd.)

Orient:

$$\{t \stackrel{?}{=} x\} \cup P'; \ \sigma \Longrightarrow \{x \stackrel{?}{=} t\} \cup P'; \ \sigma,$$

if t is not a variable.

Occurs Check:

$$\{x \stackrel{?}{=} t\} \cup P'; \ \sigma \Longrightarrow \bot,$$

if x occurs in t and $x \neq t$.

Variable Elimination:

$$\{x \stackrel{?}{=} t\} \cup P'; \ \sigma \Longrightarrow P'\theta; \ \sigma\theta,$$

if x does not occur in t, and $\theta = \{x \mapsto t\}$.

Unification Algorithm

In order to unify expressions E_1 and E_2 :

- 1. Create initial system $\{E_1 \stackrel{?}{=} E_2\}; \varepsilon$.
- 2. Apply successively unification rules.

Termination

Theorem (Termination)

The unification algorithm terminates either with \bot or with \emptyset ; σ .

Soundness

Theorem (Soundness)

If P; $\varepsilon \Longrightarrow^+ \emptyset$; σ then σ is a unifier of P.

Completeness

Theorem (Completeness)

For any unifier θ of P the unification algorithm finds a unifier σ of P such that $\sigma \leq \theta$.

Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm computes their Mgu.

Examples

Example (Success)

Unify p(a, x, h(g(z))) and p(z, h(y), h(y)).

$$\begin{split} \{p(a,x,h(g(z))) &\stackrel{?}{=} p(z,h(y),h(y))\}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}} \\ \{a \stackrel{?}{=} z,x \stackrel{?}{=} h(y),h(g(z)) \stackrel{?}{=} h(y)\}; \ \varepsilon \Longrightarrow_{\mathsf{Or}} \\ \{z \stackrel{?}{=} a,x \stackrel{?}{=} h(y),h(g(z)) \stackrel{?}{=} h(y)\}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}} \\ \{x \stackrel{?}{=} h(y),h(g(a)) \stackrel{?}{=} h(y)\}; \ \{z \mapsto a\} \Longrightarrow_{\mathsf{VarEl}} \\ \{h(g(a)) \stackrel{?}{=} h(y)\}; \ \{z \mapsto a,x \mapsto h(y)\} \Longrightarrow_{\mathsf{Dec}} \\ \{g(a) \stackrel{?}{=} y\}; \ \{z \mapsto a,x \mapsto h(y)\} \Longrightarrow_{\mathsf{Or}} \\ \{y \stackrel{?}{=} g(a)\}; \ \{z \mapsto a,x \mapsto h(y)\} \Longrightarrow_{\mathsf{VarEl}} \\ \emptyset; \ \{z \mapsto a,x \mapsto h(g(a)),y \mapsto g(a)\}. \end{split}$$

Examples

Example (Failure)

Unify p(f(a), g(x)) and p(y, y).

$$\begin{split} \{p(f(a),g(x)) &\stackrel{?}{=} p(y,y)\}; \; \varepsilon \Longrightarrow_{\mathsf{Dec}} \\ \{f(a) &\stackrel{?}{=} y,g(x) \stackrel{?}{=} y\}; \; \varepsilon \Longrightarrow_{\mathsf{Or}} \\ \{y &\stackrel{?}{=} f(a),g(x) \stackrel{?}{=} y\}; \; \varepsilon \Longrightarrow_{\mathsf{VarEI}} \\ \{g(x) &\stackrel{?}{=} f(a)\}; \; \{y \mapsto f(a)\} \Longrightarrow_{\mathsf{SymCI}} \\ \bot \end{split}$$

Examples

Example (Failure)

Unify p(x,x) and p(y,f(y)).

$$\begin{aligned} \{p(x,x) &\stackrel{?}{=} p(y,f(y))\}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}} \\ \{x &\stackrel{?}{=} y, x &\stackrel{?}{=} f(y)\}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}} \\ \{y &\stackrel{?}{=} f(y)\}; \ \{x \mapsto y\} \Longrightarrow_{\mathsf{OccCh}} \\ \bot \end{aligned}$$

Previous Example on PROLOG

Example (Infinite Terms)

```
?- p(X, X) = p(Y, f(Y)).
X = f(\star\star), Y = f(\star\star).
```

In some versions of PROLOG output looks like this:

```
X = f(f(f(f(f(f(f(f(f(...))))))))))
Y = f(f(f(f(f(f(f(f(f(...)))))))))
```

Example

```
less(X, s(X)).
foo:-less(s(Y),Y).
?- foo.
```

Occurrence Check

PROLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive. Justification: Most of the time this rule is not needed.

Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

```
Yes
```