Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria
kutsia@risc. jku.at

1/39

Contents

Substitutions

Unifiers

Unification Algorithm

2/39



Unification

Unification algorithm: The heart of the computation model of
logic programs.

3/39

Substitution

Definition (Substitution)
A substitution is a finite set of the form

9={V1l—>l‘1,...,vnl—>l‘n}

» v;’s: distinct variables.
> 1;'s: terms with 1; £ v;.
» Binding: v; — ;.

4/39



Substitution Application

Definition (Substitution application)
Substitution § = {v; — 11, ...,v, — t,} applied to an expression

E,
E6

Simultaneously replacing each occurrence of v; in E with ;.

E@ is called the instance of E wrt 6.

E; is more general than E, if E, is an instance of E; (wrt some
substitution).

5/39

Substitution Application

Example (Application)

E = p(x,y.f(a)).
0 ={y— x,x— b}.

EO = p(b,x,f(a)).

Note that x was not replaced second time.

6/39



Composition
Definition (Substitution Composition)
Given two substitutions

Qz{letl,...,vnth}

o={uy = Si,..., Uy > Sy},

their composition 6o is obtained from the set

{Vl = 0ho,...,v, — 1,0,
UL > STy e ey Uiy > S }
by deleting
» all u; — s;’s with u; € {Vl, e ,Vn},

» all Vi — l‘iO’S with V; = ;0.
7/39

Substitution Composition

Example (Composition)

0 ={x—=f0)y— 2z}
o={x—a,y— b,z y}.

bo = {x — f(b),z — y}.

8/39



Empty Substitution

Empty substitution, denoted ¢:

» Empty set of bindings.
» Ee = E for all expressions E.

9/39

Properties

Theorem

10/39



Example (Properties)

Example

Given:
0= {x—f(y),y+ z}.
o={x—a,z— b}.
E=p(x,y,8(z)).

Then

b = {x— f(y),y — b,z b}.

EO =p(f(y),z8(2))-
(EO0)o = p(f(y),b,g(b)).
E(00) = p(f(y), b, 8(b)).

Renaming Substitution

Definition (Renaming Substitution)

{x1 — y1,...,x, = Y, } IS @ renaming substitution iff y;’s are

distinct variables.

11/39

12/39



Renaming an Expression

Definition (Renaming Substitution for an Expression)
Let V be the set of variables of an expression E.

A substitution
0={x1—y1,...,% — W}
IS a renaming substitution for E iff
» ¢ is a renaming substitution, and
> {x1,...,x,} CV,and
> (VA {xtsex ) N ot = 0,

13/39

Renaming an Expression

Example

> E=f(x,a,y,2)

> o1 = {x+— uy,y— up,z+— u3z} is a renaming subst. for E.
» 0y = {x+— uy,y+— uy} is arenaming subst. for E.

> o3 = {x+—y,y— x,z+— u} is a renaming subst. for E.

» 04 = {x — y,z+— u} is not a renaming subst. for E.

> o5 = {x+— u,y— u,z+— u} is not a renaming subst.

14/39



Variants

Definition (Variant)

Expression E and expression F are variants iff there exist
substitutions 6 and o such that

» EO = F and
» Fo=FE.

15/39

Variants and Renaming

Theorem
Expression E and expression F are variants iff there exist
renaming substitutions 6 and o such that

» EO = F and
» Fo=FE.

16/39



Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution 6 is more general than a substitution o, written
6 < o, iff there exists a substitution A such that

O\ = o.

The relation < on substitutions is called the instantiation
quasi-ordering.

17/39

Instantiation Quasi-Ordering

Example (More General)
Let 0 and o be the substitutions:

0={x—yu—fy27},
o={x—z,y=z,u—f(z,2)}.

Then § < o because )\ = o where

A={y— z}.

18/39



Unifier

Definition (Unifier of Expressions)
A substitution 6 is a unifier of expressions E and F iff

E0 = F6.

Unifier

Example (Unifier of Expressions)
Let £ and F be two expressions:

E :f(vavg(z))a
F=f(f()y gu)).

Then 6 = {x — f(b),y — b,z u} is a unifier of E and F:

EQ =f(f(b),b,g(u)),
FO = f(f(b),b, g(u)).

19/39

20/39



Unification Problem, Unifier

Definition (Unification Problem)
Unification problem is a finite set of equations (expression
pairs).

Definition (Unifier)
o is a unifier of a unification problem

{E\ = Fy,...,E,=F,}
iff o is a unifier of E; and F; foreach 1 <i <n, i.e., iff

E10:F10',
T

E,o =F,o

21/39

Most General Unifier

Definition (MGU)
A unifier 6 of E and F' is most general iff 6 is more general than
any other unifier of E and F.

22/39



Unifiers and MGu

Example (Unifiers)
Let £ and F be two expressions:

E :f(vavg(z))v
F=f(f()y 8u)).

Unifiers of E and F (infinitely many):

91 — {x Hf(b%y = b,Z = u}7

92 — {)C Hf(b%y = bau = Z}7

93 — {X '_>f(b)7

Os = {x = f(b),y = b,z—u,wr—d},

y— b,z a,u+ a},

23/39

Unifiers and MGu

Example (MGU)
Let E and F be expressions from the previous example:

E=f(x,0,8(2), F=f(f(y),y,8(u))
MGU’s of E and F:

91 - {x'_>f(b),y'—>b,Z'_> I/t},
0, = {x— f(b),y — b,u— z}.

0, < 6,: 0, = 01\ with \{ = {I/t — Z}.
92 < 91: 91 = 92)\2 with )\2 = {Z — I/t}

Note: A\; and )\, are renaming substitutions.

24/39



Equivalence of mgu-s

Theorem
Most general unifier of two expressions is unique up to variable
renaming

25/39

Unification Algorithm

Rule-based approach.

» General form of rules:

P; 0o = Q; 0 or
P,o— 1.

» | denotes failure.
» o and 6 are substitutions.
» P and Q are unification problems: {E; = Fy,...,E,

?

F,).

26/39



Unification Rules

Trivial:
{sZslUP; o0 = P; 0.

Decomposition:

{f(Sl,---,Sn) ?:f(l‘l,...,tn)}UP’; o —>
120 st} UP; o

iff(Sl, ce ,Sn) #f(l‘l, ce ,l‘n).
Symbol Clash:

{f(s1, - osm) = glt1, .. ) JUP; 0 = L.

iff # g.

Unification Rules (Contd.)

Orient:
{tZ=x}UP; 0= {x=1} UP; o,
if # is not a variable.
Occurs Check:
[xZ=t}UP; 0= 1,
if x occurs in r and x # t.
Variable Elimination:
{x =t} UP'; 0 = P'0; o4,

if x does not occur in ¢, and 6 = {x + t}.

27/39

28/39



Unification Algorithm

In order to unify expressions E; and E»:
1. Create initial system {E; = E>};¢.
2. Apply successively unification rules.

29/39

Termination

Theorem (Termination)
The unification algorithm terminates either with 1. or with (); o.

30/39



Soundness

Theorem (Soundness)
If P; e =T 0; o then o is a unifier of P.

31/39

Completeness

Theorem (Completeness)

For any unifier 6 of P the unification algorithm finds a unifier o of
P such that o < 6.

32/39



Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm

computes their MGU.

Examples

Example (Failure)
Unify p(f(a), g(x)) and p(y, y).

{p(f(a),g(x)) = p(y,y)
{f(a) = y,8(x) =y}; e =0
{y =f(a),8(x) =y}; e =var

{y—

{s(x) =fla)}; fla)} =symai
1

}s € =Dec

33/39

34/39



Examples

Example (Success)
Unify p(a, x, h(g(z))) and p(z, h(y), h(y)).

{p(a,x,h(g(2))) = p(z, h(y),h(y))}; € =>Dec

{a=2z,x=h(y), h(g(z)) = h(y)}; e =or
{z=a,x=h(y),h(g(z)) = h(y)}; € =>varEl
{x = h(y), h(g(a)) = h(y)}; {z— a} = vae
{h(g(a)) = h(»)}; {z— a,x = h(y)} =>Dec
{gla) = y}; {z— a,x = h(Y)} =0
{y=ga)}; {z— a,x = h(y)} =vae
0; {z+— a,x > h(g(a)),y — gla)}.

Examples

Example (Failure)
Unify p(x,x) and p(y,f(y)).

{p(x,x) = p(y,f(¥))}; € = Dec
{x=y,x=f(»)}; e = vame

{y =5} {x =y} =0ccch
1

35/39

36/39



Previous Example on PROLOG

Example (Infinite Terms)
- p(X,X)=p (Y, £(Y)).

X =1f(x%x), Y = £(xx).

In some versions of PROLOG output looks like this:
X = f(E(E(E(E(E(E(E(E(E(.-.2))))))))))

37/39

Occurrence Check

PROLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

38/39



Occurrence Check

Example

less (X,s (X)) .
foo:-less(s(Y),Y).

?— foo.

Yes

39/39



	Substitutions
	Unifiers
	Unification Algorithm

