Logic Programming

Using Data Structures
Part 2

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria
kutsia@risc. jku.at

Contents

Recursive Comparison

Joining Structures Together

Accumulators

Difference Structures

Comparing Structures

Structure comparison:
» More complicated than the simple integers
» Have to compare all the individual components
» Break down components recursively.

Comparing Structures. aless

Example

aless (X, Y) succeeds if
» x and Y stand for atoms and
» X is alphabetically less than Y.

aless (avocado, clergyman) succeeds.
aless (windmill, motorcar) fails.
aless (picture, picture) fails.

Comparing Structures. aless

Success

Success

Recursion

Failure

Failure

Failure

Run out of characters in the first word:

aless (book, bookbinder).

The first character of the first word is
alphabetically less than one of the second:
aless (avocado, clergyman) .

The first character is the same in both. Then have
to check the rest:

For aless(lazy, leather) check

aless (azy, eather).

The first character of the first word is greater than
the first one of the second:

aless (book, apple).

Reach the end of both words at the same time:
aless (apple, apple).

Run out of characters for the second word:
aless (alphabetic, alp).

Representation

» Transform atoms into a recursive structure.
» List of integers (ASCII codes).
» Use built-in predicate atom_codes:

?— atom_codes (alp, [97,108,112]).
yes

?— atom_codes (alp, X).
X = [97,108,112] 2
yes

?—atom_codes (X, [97,108,112]).
X = alp ?
yes

First Task

Convert atoms to lists:

atom_codes (X, XL).
atom_codes (Y, YL).

Compare the lists:

alessx (XL, YL).

Putting together:

aless (X, Y) :—
atom_codes (X, XL),
atom_codes (Y, YL),
alessx (XL, YL).

Second Task

Compose alessx.

Success First word ends before second:
alessx ([], [_1_1).

Success A character in the first is alphabetically less than
one in the second:
alessx ([X|_1, [Y|_]) :=— X < Y.

Recursion The first character is the same in both. Then have

to check the rest:
alessx ([H|X], [H|Y]) :— alessx (X, Y).

What about failing cases?

Program

aless (X, Y):-
atom_codes (X, XL),
atom_codes (Y, YL),
alessx (XL, YL).

alessx ([1, [_I_1).
alessx ([X|_], [Y|_1):—
X < Y.

alessx ([H|X], [H|Y]):—
alessx (X, Y).

Appending Two Lists

For any lists List1, List2,and List3
List2 appendedto List1 is List3 iff either

» Listl is the empty listand List3is List2, or
» List1 is a nonempty list and

» the head of L.ist 3 is the head of List1 and
» the tail of List3 is List2 appended to the tail of List1.

Program:

append([], L, L).
append ([X|L1l], L2, [X|L3]) :-
append (L1, L2, L3).

Using append

Test
Total List
Isolate

)

?_

?_

Split

append([a,b,c], [2,1]1,[a,b,c,2,1]).
append([a,b,c],[2,1],X).
append (X, [2,1], [a,b,c,2,1]).
append([a, b cl,X,la,b,c,2,1]1).
append (X,Y, [a,b,c,2,1]).

Inventory Example: Bicycle Factory

» To build a bicycle we need to know which parts to draw
from the supplies.

» Each part of a bicycle may have subparts.

» Task: Construct a tree-based database that will enable
users to ask questions about which parts are required to
build a part of bicycle.

Inventory Example: Bicycle Factory

» To build a bicycle we need to know which parts to draw
from the supplies.

» Each part of a bicycle may have subparts.

» Task: Construct a tree-based database that will enable
users to ask questions about which parts are required to
build a part of bicycle.

handles
fork frame

\ L

hub

spoke

Parts of a Bicycle

» Basic parts:

basicpart (rim) . basicpart (gears) .
basicpart (spoke) . basicpart (bolt) .
basicpart (rearframe). basicpart (nut).

basicpart (handles) . basicpart (fork) .

» Assemblies, consisting of a quantity of basic parts or other

assemblies:
assembly (bike, [wheel,wheel, frame]).
assembly (wheel, [spoke,rim,hub]).
assembly (frame, [rearframe, frontframe]).
assembly (hub, [gears,axle]).
assembly (axle, [bolt,nut]).
(

assembly (frontframe, [fork,handles]).

Bike as a Tree

bike

wheel wheel frame
spoke rim hub spoke rim hub rearfr. frontfr.
gears axle gears axle fork handles

/\ /\

bolt nut bolt nut

Program

Write a program that, given a part, will list all the basic parts
required to construct it.

ldea:
1. If the part is a basic part then nothing more is required.

2. If the part is an assembly, apply the same process (of
finding subparts) to each part of it.

Predicates: partsof

partsof (X, Y):Succeeds if x is a part of bike, and Y is the
list of basic parts required to construct x.

» Boundary condition. Basic part:
partsof (X, [X]) :— basicpart (X).
» Assembly:

partsof (X, P) :-—
assembly (X, Subparts),
partsoflist (Subparts, P).

» Need to define partsoflist.

Predicates: partsoflist

» Boundary condition. List of parts for the empty list is
empty:
partsoflist ([], [1).

» Recursive case. For a nonempty list, first find partsof of
the head, then recursively call partsoflist on the tail of
the list, and glue the obtained lists together:

partsoflist ([P|Tail], Total) :-
partsof (P, Headparts),
partsoflist (Tail, Tailparts),
append (Headparts, Tailparts, Total).

Finding Parts

?— partsof (bike, Parts).

Parts=[spoke, rim,gears,bolt,nut, spoke, rim,
gears,bolt,nut, rearframe, fork, handles] ;
No

?— partsof (wheel, Parts).

Parts=[spoke, rim, gears, bolt, nut] ;
No

Using Intermediate Results

Frequent situation:

» Traverse a PROLOG structure.

» Calculate the result which depends on what was found in
the structure.

» At intermediate stages of the traversal there is an
intermediate value for the result.
Common technique:
» Use an argument of the predicate to represent the "answer
so far".
» This argument is called an accumulator.

Length of a List without Accumulators

Example
listlen (L, N) succeeds if the length of list 1. is N.

» Boundary condition. The empty list has length O:
listlen([], 0).

» Recursive case. The length of a nonempty list is obtained
by adding one to the length of the tail of the list.

listlen([H|T], N) :-
listlen (T, N1),
N is N1 + 1.

Length of a List with an Accumulator

Example

lenacc (L, A, N) succeeds if the length of list 1., when
added the number 2, is N.

» Boundary condition. For the empty list, the length is
whatever has been accumulated so far, i.e. A:
lenacc ([], A, A).

» Recursive case. For a nonempty list, add 1 to the
accumulated amount given by A, and recur to the tail of the
list with a new accumulator value A1:
lenacc ([H|T], A, N) :-

Al is A + 1,
lenacc (T, Al, N).

Length of a List with an Accumulator, Cont.

Example
Complete program:

listlenacc (L, N) :-—
lenacc (L, 0, N).

lenacc ([], A, A).

lenacc ([H|T], A, N) :-
Al is A + 1,
lenacc (T, Al, N).

Computing List Length

Example (Version without Accumulator)

Computing List Length

Example (Version without Accumulator)
listlen([a,b,c], N).

Computing List Length

Example (Version without Accumulator)
listlen([a,b,c], N).
listlen([b,c], N1), N is N1 + 1.

Computing List Length

Example (Version without Accumulator)
listlen([a,b,c], N).

listlen([b,c], N1), N is N1 + 1.
listlen([c], N2), N1 is N2 + 1, N is N1 + 1.

Computing List Length

Example (Version without Accumulator)

listlen([a,b,c], N).

listlen([b,c], N1), N is N1 + 1.

listlen([c], N2), N1 is N2 + 1, N is N1 + 1.
(

listlen([], N3), N2 is N3 + 1, N1 is N2 + 1,
N is N1 + 1.

Computing List Length

Example (Version without Accumulator)

listlen([a,b,c], N).

listlen([b,c], N1), N is N1 + 1.

listlen([c], N2), N1 is N2 + 1, N is N1 + 1.
listlen([], N3), N2 is N3 + 1, N1 is N2 + 1,
N is N1 + 1.

N2 is 0 + 1, N1 is N2 + 1, N is N1 + 1.

Computing List Length

Example (Version without Accumulator)

listlen([a,b,c], N).

listlen([b,c], N1), N is N1 + 1.
listlen([c], N2), N1 is N2 + 1, N is N1 + 1.
listlen([], N3), N2 is N3 + 1, N1 is N2 + 1,
N is N1 + 1.

N2 is 0 + 1, N1 is N2 + 1, N is N1 + 1.

Nl is 1 + 1, N is N1 + 1.

Computing List Length

Example (Version without Accumulator)

listlen([a,b,c], N).
listlen([b,c], N1), N is N1 + 1.
listlen([c], N2), N1 is N2 + 1, N is N1 + 1.
listlen([], N3), N2 is N3 + 1, N1 is N2 + 1,
N is N1 + 1.
N2 is 0 + 1, N1 is N2 + 1, N is N1 + 1.

+ 1, N is N1 + 1.

Computing List Length

Example (Version without Accumulator)

listlen([a,b,c], N).
listlen([b,c], N1), N is N1 + 1.
listlen([c], N2), N1 is N2 + 1, N is N1 + 1.
listlen([], N3), N2 is N3 + 1, N1 is N2 + 1,
N is N1 + 1.
N2 is 0 + 1, N1 is N2 + 1, N is N1 + 1.

+ 1, N is N1 + 1.

Computing List Length

Example (Version with an Accumulator)

listlenacc([a,b,c], N).

Computing List Length

Example (Version with an Accumulator)

listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Computing List Length

Example (Version with an Accumulator)
listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).

Computing List Length

Example (Version with an Accumulator)
listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).
lenacc([b,c], 1, N).

Computing List Length

Example (Version with an Accumulator)

listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).
lenacc([b,c], 1, N).

A2 is 1+1, lenacc([c], A2, N).

Computing List Length

Example (Version with an Accumulator)
listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).
lenacc([b,c], 1, N).

A2 is 1+1, lenacc([c], A2, N).
lenacc([c], 2, N).

Computing List Length

Example (Version with an Accumulator)

listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).
lenacc([b,c], 1, N).

A2 is 1+1, lenacc([c], A2, N).
lenacc([c], 2, N).

A3 is 2+1, lenacc([], A3, N).

Computing List Length

Example (Version with an Accumulator)
listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).
lenacc([b,c], 1, N).

A2 is 1+1, lenacc([c], A2, N).
lenacc([c], 2, N).

A3 is 2+1, lenacc([], A3, N).
lenacc([], 3, N).

Computing List Length

Example (Version with an Accumulator)
listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).

Al is 0+1, lenacc([b,c], Al, N).
lenacc([b,c], 1, N).

A2 is 1+1, lenacc([c], A2, N).
lenacc([c], 2, N).

A3 is 2+1, lenacc([], A3, N).
lenacc([], 3, N).

N =3

List as an Accumulator

» Accumulators need not be integers.

» If a list is to be produced as a result, an accumulator will
hold a list produced so far.

» Wasteful joining of structures avoided.

Example (Reversing Lists)

reverse (List, Rev) :-—
rev_acc (List, [], Rev).

rev_acc([], Acc, Acc).
rev_acc ([X]|T], Acc, Rev) :-—
rev_acc (T, [X]|Acc], Rev).

Bicycle Factory

Recall how parts of bike were found.
partsoflist has to find the parts coming from the list
[wheel, wheel, frame]:

Find parts of frame.
Append them to [] to find parts of [frame].
Find parts of wheel.

Append them to the parts of [frame] to find parts of
[wheel, frame].

> parts of wheel.

them to the parts of [wheel, frame] to find parts
of [wheel, wheel, frame].

Wasteful!

v

v

v

v

v

Bicycle Factory

Improvement idea: Get rid of append. Use accumulators.
partsacc (X, A, P):partsof X, when added to 2, give P.

partsof (X, P) :— partsacc(X, [], P).

partsacc (X, A, [X]|A]) :- basicpart (X).
partsacc(X, A, P) :-
assembly (X, Subparts),
partsacclist (Subparts, A, P).

partsacclist ([], A, A).

partsacclist ([P|Tail], A, Total) :-
partsacc (P, A, Headparts),
partsacclist (Tail, Headparts, Total).

Difference Structures

Compute parts of wheel without and with accumulator:

Example (Without Accumulator)

?— partsof (wheel, P).

X = [spoke, rim, gears, bolt, nut] ;
No

Example (With Accumulator)
?— partsof (wheel, P).

X = [nut, bolt, gears, rim, spoke] ;
No

Reversed order.

Difference Structures

How to avoid wasteful work and retain the original order at the
same time?

Difference structures.

Open Lists and Difference Lists

v

Consider the list [a, b, c|Ho].

The structure of the list is known up to a point.

If, at some point, Ho is unbound then we have an open list.
Informally, Ho is a called a “hole”.

v

v

v

Open Lists and Difference Lists

» Unify Ho with [d, e]:
?- List=[a,b,c|Ho], Ho=[d,e].

Open Lists and Difference Lists

» Unify Ho with [d, e]:
?- List=[a,b,c|Ho], Ho=[d,e].
List=[a,b,c,d, e]

Open Lists and Difference Lists

» Unify Ho with [d, e]:
?- List=[a,b,c|Ho], Ho=[d,e].
List=[a,b,c,d, e]

» We started with an open list and “filled” in the hole with the
structure.

Open Lists and Difference Lists

» The result of filling in the hole in an open list with a “proper”
list is a “proper” list.
» What happens if we instantiate the hole with an open list?

Open Lists and Difference Lists

» The result of filling in the hole in an open list with a “proper”
list is a “proper” list.

» What happens if we instantiate the hole with an open list?
» The result will be an open list again:

?—- List=[a,b,c|Ho], Ho=[d,e]|Y].

?- List=[a,b,c,d,el|Y].

Open Lists and Difference Lists

v

Filling in the hole with a proper list, again:
» ?— List=[a,b,c|Ho], Ho=[d,e].
» ?— List=[a,b,c,d, e].

Is not it the same as append ([a, b, c], [d,e],List)?

v

open_append

v

We can define append in terms of “hole filling”.
Assume the first list is given as an open list.

Define a predicate that fills in the hole with the second list.
A naive and limited way of doing this:
open_append ([H1,H2,H3|Hole],L2) : -Hole=L2.

v

v

v

open_append

v

v

v

v

We can define append in terms of “hole filling”.

Assume the first list is given as an open list.

Define a predicate that fills in the hole with the second list.
A naive and limited way of doing this:

open_append ([H1,H2,H3|Hole],L2) : -Hole=L2.

?—- List=[a,b,c|Ho], open_append(List, [d,e]).

open_append

v

v

v

v

We can define append in terms of “hole filling”.

Assume the first list is given as an open list.

Define a predicate that fills in the hole with the second list.

A naive and limited way of doing this:

open_append ([H1,H2,H3|Hole],L2) : -Hole=L2.

?—- List=[a,b,c|Ho], open_append(List, [d,e]).
List=[a,b,c,d, el
Ho=[d, e]

open_append

» We can define append in terms of “hole filling”.
» Assume the first list is given as an open list.
» Define a predicate that fills in the hole with the second list.
» A naive and limited way of doing this:
open_append ([H1,H2,H3|Hole],L2) : —Hole=L2.
?—- List=[a,b,c|Ho], open_append(List, [d,e]).
List=[a,b,c,d, el
Ho=[d, e]
» Improvement is needed: This version assumes having a
list with three elements and the hole.

Improvement Idea

v

One often wants to say about open lists something like
“take the open list and fill in the hole with ...”

v

Hence, one should know both an open list and a hole.

Idea for list representation: Represent a list as an open list
together with the hole.

Such a representation is called a difference list.

Example: The difference list representation of the list
[a, b, c] is the pair of terms [a, b, c|X] and X.

v

v

v

diff_append

» Difference append:

diff_append(Openlist, Hole, L2) :- Hole=L2.

diff_append

» Difference append:
diff_append(Openlist, Hole, L2) :- Hole=L2.
?- List=[a,b,c|Ho], diff_append(List,Ho, [d,e]).

diff_append

» Difference append:
diff_append(Openlist, Hole, L2) :- Hole=L2.
?- List=[a,b,c|Ho], diff_append(List,Ho, [d,e]).

List=[a,b,c,d, el
Ho=1[d, e]

diff_append

» Difference append:
diff_append(Openlist, Hole, L2) :- Hole=L2.
?- List=[a,b,c|Ho], diff_append(List,Ho, [d,e]).

List=[a,b,c,d, el
Ho=[d, e]

» Compare to the open_append:
open_append ([H1,H2,H3|Hole], L2) :- Hole=L2.

diff_append

» Difference append:
diff_append(Openlist, Hole, L2) :- Hole=L2.
?- List=[a,b,c|Ho], diff_append(List,Ho, [d,e]).

List=[a,b,c,d, el
Ho=[d, e]

» Compare to the open_append:
open_append ([H1,H2,H3|Hole], L2) :- Hole=L2.
?- List=[a,b,c|Ho], open_append(List, [d,e]).

List=[a,b,c,d, el
Ho=1[d, e]

Difference Lists

» Introduce a notation for difference lists.

» |Idea: We are usually interested the open list part of difference
list, without the hole.

Difference Lists

» Introduce a notation for difference lists.

» |Idea: We are usually interested the open list part of difference
list, without the hole.

» From the pair [a, b, c|Ho] and Ho we are interested in
[a,b,c].

Difference Lists

v

Introduce a notation for difference lists.

v

Idea: We are usually interested the open list part of difference
list, without the hole.

v

From the pair [a, b, c|Ho] and Ho we are interested in
[a,b,c].

v

“Subtracting” the hole Ho from the open list [a, b, c|Ho].

Difference Lists

» Introduce a notation for difference lists.

» |Idea: We are usually interested the open list part of difference
list, without the hole.

» From the pair [a, b, c|Ho] and Ho we are interested in
[a,b,c].

» “Subtracting” the hole Ho from the open list [a, b, c|Ho].

» [a,b,c|Ho]-Ho.

Difference Lists

» Introduce a notation for difference lists.

» |Idea: We are usually interested the open list part of difference
list, without the hole.

» From the pair [a, b, c|Ho] and Ho we are interested in
[a,b,c].

» “Subtracting” the hole Ho from the open list [a, b, c|Ho].

» [a,b,c|Ho]-Ho.

» The - has no interpreted meaning. Instead one could define any
operator to use there.

diff_append. Version 2

» diff append(Openlist-Hole, L2) :— Hole=L2.

diff_append. Version 2

» diff append(Openlist-Hole, L2) :— Hole=L2.

?- DList=[a, b, c|Ho]-Ho,
diff_append (DList, [d,e]).

diff_append. Version 2

» diff append(OpenlList-Hole, L2) :- Hole=L2.

?- DList=[a, b, c|Ho]-Ho,
diff_append (DList, [d,e]).

DList=[a,b,c,d,e]l-[d,e]
Ho=1[d, e]

diff_append. Version 2

» diff append(OpenlList-Hole, L2) :- Hole=L2.

?— DList=[a,b,c|Ho]-Ho,
diff_append (DList, [d,e]).
DList=[a,b,c,d,e]l-[d,e]
Ho=1[d, e]

» Has to be improved again: We are not interested in the “filled
hole” in the instantiation of Ho hanging around.

diff_append. Version 3

> Let diff_append return the open list part of the first argument:

diff_append(OpenlList-Hole, L2, OpenList) :-
Hole=L2.

diff_append. Version 3

> Let diff_append return the open list part of the first argument:
diff_append(OpenlList-Hole, L2, OpenList) :-
Hole=L2.
?- DList=[a, b, c|Ho]-Ho,
diff_append(Dlist, [d,e],Ans).

diff_append. Version 3

> Let diff_append return the open list part of the first argument:

diff_append(OpenlList-Hole, L2, OpenList) :-
Hole=L2.

?- DList=[a, b, c|Ho]-Ho,
diff_append(Dlist, [d,e],Ans).

Dlist=[a,b,c,d,e]-[d,e]
Ho=[d, e]
Ans=[a,b,c,d, e]

diff_append. Version 3

> Let diff_append return the open list part of the first argument:

diff_append(OpenlList-Hole, L2, OpenList) :-
Hole=L2.

?— DList=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e],Ans).

Dlist=[a,b,c,d,e]-[d,e]
Ho=[d, e]
Ans=[a,b,c,d, e]

» It is better now. Ans looks as we would like to.

diff_append. Version 3

> Let diff_append return the open list part of the first argument:

diff_append(OpenlList-Hole, L2, OpenList) :-
Hole=L2.

?— DList=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e],Ans).

Dlist=[a,b,c,d,e]-[d,e]
Ho=[d, e]
Ans=[a,b,c,d, e]

» |t is better now. Ans looks as we would like to.
» Sitill, there is a room for improvement: The di ff_append

» takes a difference list as its first argument,
» a proper list as its second argument, and
» returns a proper list.

» Let’s make it more uniform.

diff_append. Version 3

» Better, but not the final approximation: diff_append takes two
difference lists and returns an open list:

diff_ append/(
OpenListl-Holel, OpenList2-Hole2, OpenListl

) -
Holel=OpenList2.

diff_append. Version 3

» Better, but not the final approximation: diff_append takes two
difference lists and returns an open list:
diff_ append/(
OpenListl-Holel, OpenList2-Hole2, OpenListl
) -
Holel=OpenList2.

?— Dlist=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e|Hol]-Hol,Ans).

diff_append. Version 3

» Better, but not the final approximation: diff_append takes two
difference lists and returns an open list:

diff_ append/(

OpenListl-Holel, OpenList2-Hole2, OpenListl
) -

Holel=OpenList2.

?— Dlist=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e|Hol]-Hol,Ans).

Dlist=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]

diff_append. Version 3

» Better, but not the final approximation: diff_append takes two
difference lists and returns an open list:

diff_ append/(
OpenListl-Holel, OpenList2-Hole2, OpenListl

) -
Holel=OpenList2.

?— Dlist=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e|Hol]-Hol,Ans).
Dlist=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]

Ans=[a,b,c,d,e|Hol]

» We have returned an open list but we want a difference list.

diff_append. Version 3

» Better, but not the final approximation: diff_append takes two
difference lists and returns an open list:

diff_ append/(

OpenListl-Holel, OpenList2-Hole2, OpenListl
) -

Holel=OpenList2.

?— Dlist=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e|Hol]-Hol,Ans).

Dlist=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]

» We have returned an open list but we want a difference list.

» The first list has gained the hole of the second list.

diff_append. Version 3

» Better, but not the final approximation: diff_append takes two
difference lists and returns an open list:

diff_ append/(

OpenListl-Holel, OpenList2-Hole2, OpenListl
) -

Holel=OpenList2.

?— Dlist=[a,b,c|Ho]-Ho,
diff_append(Dlist, [d,e|Hol]-Hol,Ans).

Dlist=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]

» We have returned an open list but we want a difference list.
» The first list has gained the hole of the second list.

» All we need to ensure is that we return the hole of the second
list.

diff_append. Version 3
» Return the hole of the second list as well:

diff_append/(
OpenListl-Holel,
OpenList2-Hole2,
OpenlListl-Hole2

) -
Holel=OpenList2.

diff_append. Version 3
» Return the hole of the second list as well:

diff_append/(
OpenListl-Holel,
OpenList2-Hole2,
OpenlListl-Hole2

) -
Holel=OpenList2.

?—- DList=[a,b,c|Ho]-Ho,
diff_append(DList, [d,e|Hol]-Hol,Ans).

diff_append. Version 3
» Return the hole of the second list as well:

diff_append/(
OpenListl-Holel,
OpenList2-Hole2,
OpenlListl-Hole2
) -
Holel=OpenList2.

?—- DList=[a,b,c|Ho]-Ho,
diff_append(DList, [d,e|Hol]-Hol,Ans).
DList=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]-Hol

diff_append. Version 3
» Return the hole of the second list as well:

diff_append/(
OpenListl-Holel,
OpenList2-Hole2,
OpenlListl-Hole2

) -
Holel=OpenList2.

?— DList=[a,b,c|Ho]-Ho,
diff_append(DList, [d,e|Hol]-Hol,Ans).

DList=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]-Hol

» We have returned an difference list.

diff_append. Version 3
» Return the hole of the second list as well:

diff_append/(
OpenListl-Holel,
OpenList2-Hole2,
OpenlListl-Hole2

) -
Holel=OpenList2.

?— DList=[a,b,c|Ho]-Ho,
diff_append(DList, [d,e|Hol]-Hol,Ans).

DList=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]-Hol

» We have returned an difference list.
» Now we can recover the proper list we want:

diff_append. Version 3
» Return the hole of the second list as well:

diff_append/(
OpenListl-Holel,
OpenList2-Hole2,
OpenlListl-Hole2
) -
Holel=OpenList2.
?— DList=[a,b,c|Ho]-Ho,
diff_append(DList, [d,e|Hol]-Hol,Ans).

DList=[a,b,c,d,e|Hol]-[d,e|Hol]
Ho=[d, e|Hol]
Ans=[a,b,c,d,e|Hol]-Hol

» We have returned an difference list.
» Now we can recover the proper list we want:

?— DList=[a,b,c|Ho]-Ho,
diff_append (DList, [d,e|Hol]-Hol,Ans-[]).

Ans=[a,b,c,d, e]

diff_append. Version 4

diff_append can be made more compact:

diff_append (
OpenListl-Holel,
Holel-Hole?2,
OpenListl-Hole2

diff_append. Usage

» Add an element at the end of a list:

add_to_back (L-H, E1, Ans) :-
diff_append(L-H, [El1|H1]-H1, Ans-[]).

diff_append. Usage

» Add an element at the end of a list:

add_to_back (L-H, E1, Ans) :-
diff_append(L-H, [El1|H1]-H1, Ans-[]).

?- add_to_back([a,b,c|H]-H, e, Ans).

diff_append. Usage

» Add an element at the end of a list:
add_to_back (L-H, EI1,

Ans)
diff_append (L-H,

[E1|H1]-HI,
?- add_to_back([a,b,c|H]-H, e, Ans).
H [e]

Ans—-[1]) .

Ans = [a,b,c,e]

Difference Structures

Both accumulators and difference structures use two
arguments to build the output structure.

Assumulators: the “result so far” and the “final result”.

Difference structures: the (current approximation of the) “final
result” and the “hole in there where the further

information can be put”.

Bicycle Factory

Use holes.

partsof (X, P) :-—
partshole (X, P-Hole),
Hole=[].

partshole (X, [X|Hole]-Hole) :-—-
basicpart (X) .

partshole (X, P-Hole) :-
assembly (X, Subparts),
partsholelist (Subparts, P-Hole).

partsholelist ([], Hole-Hole).

partsholelist ([P|Tail], Total-Hole)
partshole (P, Total-Holel),
partsholelist (Tail, Holel-Hole).

Bicycle Factory. Detailed View

partsof (X, P) :-—
partshole (X, P-Hole),
Hole=[].

» partshole (X, P-Hole) builds the result in the second
argument P and returns in Hole a variable.

» Since partsof calls partshole only once, it is
necessary to terminate the difference list by instantiating
Hole with []. (Filling the hole.)

» Alternative definition of partsof:
partsof (X, P) :— partshole(X, P-[]).
It ensures that the very last hole is filled with [] even
before the list is constructed.

Bicycle Factory. Detailed View

partshole (X, [X|Hole]-Hole) :-—-
basicpart (X) .

» It returns a difference list containing the object (basic part)
in the first argument.
» The hole remains open for further instantiations.

Bicycle Factory. Detailed View

partshole (X, P-Hole) :-
assembly (X, Subparts),
partsholelist (Subparts, P-Hole).
» Finds the list of subparts.
» Delegates the traversal of the list {0 partsholelist.
» The difference list P-Holeis passed to partsholelist.

Bicycle Factory. Detailed View

partsholelist ([P|Tail], Total-Hole) :-
partshole (P, Total-Holel),
partsholelist (Tail, Holel-Hole).

» partshole starts building the Total list, partially filling it
with the parts of P, and leaving a hole Holel init.

» partsholelist is called recursively on the Tail. It
constructs the list Holel partially, leaving a hole Hole in it.

» Since Holel is shared between partshole and
partsholelist, after getting instantiated in
partsholelist it gets also instantiated in partshole.

» Therefore, at the end Total consists of the portion that

partshole constructed, the portion of Holel
partsholelist constructed, and the hole Hole.

	Recursive Comparison
	Joining Structures Together
	Accumulators
	Difference Structures

