to be prepared for 29.11.2016

Exercise 31. $R[X] = R[x_1, \ldots, x_n]$ denotes the polynomial ring in *n* indeterminates over a commutative ring with 1. Any admissible ordering < on the monoid of power products [X] induces a strict partial ordering << on R[X], the induced ordering, in the following way:

 $\begin{array}{ll} f << g & \text{iff} \quad f=0 \text{ and } g \neq 0 \text{ or} \\ f \neq 0, \, g \neq 0 \text{ and } \operatorname{lpp}(f) < \operatorname{lpp}(g) \text{ or} \\ f \neq 0, \, g \neq 0, \, \operatorname{lpp}(f) = \operatorname{lpp}(g) \text{ and } \operatorname{red}(f) << \operatorname{red}(g). \end{array}$ Prove that << (or actually >>) is a Noetherian partial order on R[X].

Exercise 32. Let \langle be an admissible ordering on [X] and $F \subseteq K[X]$. Prove that the reduction \longrightarrow_F is a Noetherian relation on R[X].

Exercise 33. Prove the following theorem (Theorem 2.3.14 (a,b,c)):

Let $c \in K \setminus 0$, $s \in [X]$, $F \subseteq K[X]$, $g_1, g_2 \in K[X]$.

- (a) $\longrightarrow_F \subseteq >>,$
- (b) \longrightarrow_F is Noetherian,
- (c) if $g_1 \longrightarrow_F g_2$ then $csg_1 \longrightarrow_F csg_2$,

Exercise 34. Let $F \subseteq K[X]$, $g_1, g_2, h \in K[X]$. Prove the following statement (Theorem 2.3.14 (d)):

If $g_1 \longrightarrow_F g_2$ then $g_1 + h \downarrow_F^* g_2 + h$.

Exercise 35. Verify the statement of Lemma 2.3.14 (d) by the following example: $R = K[x, y], F = \{x^2y^2 + y - 1, x^2y + x\}, g_1 = x^5y^5, h = x^3y^3.$