to be prepared for 22.11.2016

Exercise 26. Apply the modular algorithm for computing the resultant $\operatorname{res}_{y}(a, b)$ of the polynomials

$$
\begin{aligned}
a(x, y) & =x y^{2}-x^{3} y-2 x^{2} y+x y+2 x^{4}-2 x^{2} \\
b(x, y) & =2 x^{2} y^{2}-4 x^{3} y+4 x^{4} .
\end{aligned}
$$

Exercise 27. According to Theorem 4.3 .3 a solution of $\operatorname{res}_{x_{r}}(a, b)=0$ can be extended to a common zero of a and b, in case the leading coefficient of a or b is a nonzero constant. This can be achieved by a suitable change of coordinates. Work out an algorithm for solving systems of algebraic equations by resultants along these lines.

Exercise 28. Let $<$ be an admissible ordering on $[X]$. Prove the following statements.

1. If $s, t \in[X]$ and s divides t then $s \leq t$.
2. $<$ (or actually $>$) is Noetherian, i.e. there are no infnite chains of the form $t_{0}>t_{1}>t_{2}>\cdots$, and consequently every subset of $[X]$ has a smallest element.

Exercise 29. The graduated reverse lexicographic ordering on power products of $x_{1}, \ldots, x_{n}<$ grlex is defined by
$s<$ grlex $t \quad$ iff $\quad \operatorname{deg}(s)<\operatorname{deg}(t) \quad$ or $\operatorname{deg}(s)=\operatorname{deg}(t) \quad$ and $\quad t<_{\operatorname{lex}, \pi} s ;$
where π is the permutation on n letters given by $\pi(j)=n-j+1$ and $<_{\text {lex }, \pi}$ is the lexicographic order wrto. π. Prove that $<_{\text {grlex }}$ is an admissible ordering.

Exercise 30. Let $<_{1}$ be an admissible ordering on $X_{1}=\left[x_{1}, \ldots, x_{i}\right]$ and $<_{2}$ an admissible ordering on $X_{2}=\left[x_{i+1}, \ldots, x_{n}\right]$. Show that the product ordering $<_{\text {prod }, i,<_{1},<_{2}}$ on $X=\left[x_{1}, \ldots, x_{n}\right]$ is an admissible ordering.

