to be prepared for 22.11.2016

Exercise 26. Apply the modular algorithm for computing the resultant $res_y(a, b)$ of the polynomials

$$\begin{array}{rcl} a(x,y) &=& xy^2 - x^3y - 2x^2y + xy + 2x^4 - 2x^2 \\ b(x,y) &=& 2x^2y^2 - 4x^3y + 4x^4. \end{array}$$

Exercise 27. According to Theorem 4.3.3 a solution of $\operatorname{res}_{x_r}(a, b) = 0$ can be extended to a common zero of a and b, in case the leading coefficient of a or b is a nonzero constant. This can be achieved by a suitable change of coordinates. Work out an algorithm for solving systems of algebraic equations by resultants along these lines.

Exercise 28. Let < be an admissible ordering on [X]. Prove the following statements.

- 1. If $s, t \in [X]$ and s divides t then $s \leq t$.
- 2. < (or actually >) is Noetherian, i.e. there are no infnite chains of the form $t_0 > t_1 > t_2 > \cdots$, and consequently every subset of [X] has a smallest element.

Exercise 29. The graduated reverse lexicographic ordering on power products of $x_1, \ldots, x_n <_{\text{grlex}}$ is defined by

 $\begin{array}{ll} s <_{\operatorname{grlex}} t & \operatorname{iff} & \operatorname{deg}(s) < \operatorname{deg}(t) & \operatorname{or} \\ & \operatorname{deg}(s) = \operatorname{deg}(t) & \operatorname{and} & t <_{\operatorname{lex},\pi} s; \end{array}$

where π is the permutation on *n* letters given by $\pi(j) = n - j + 1$ and $<_{\text{lex},\pi}$ is the lexicographic order wrto. π . Prove that $<_{\text{grlex}}$ is an admissible ordering.

Exercise 30. Let $<_1$ be an admissible ordering on $X_1 = [x_1, \ldots, x_i]$ and $<_2$ an admissible ordering on $X_2 = [x_{i+1}, \ldots, x_n]$. Show that the product ordering $<_{prod,i,<_1,<_2}$ on $X = [x_1, \ldots, x_n]$ is an admissible ordering.