to be prepared for 18.10.2016

Exercise 6. Compute the GCD of

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

by a polynomial remainder sequence.
Exercise 7. Prove the following statement. Two nonzero polynomials $f(x)$ and $g(x)$ with coefficients in a unique factorization domain are similar iff they have equal primitive part.

Exercise 8. Let R be commutative ring, $R[x]$ the corresponding polynomial ring. Prove that $R[x]$ is a Euclidean domain if and only if R is a field.

Exercise 9. Compute the pseudo-quotient $q(x)$ and the pseudo-remainder $r(x)$ for the two integral polynomials

$$
\begin{aligned}
u(x) & =x^{6}+x^{5}-x^{4}+2 x^{3}+3 x^{2}-x+2 \quad \text { and } \\
v(x) & =2 x^{3}+2 x^{2}-x+3
\end{aligned}
$$

Exercise 10. Let R be an integral domain, $a, b \in R[x], b \neq 0, m=\operatorname{deg}(a) \geq$ $n=\operatorname{deg}(b), \alpha, \beta \in R$. Prove:

$$
\begin{aligned}
\operatorname{pquot}(\alpha a, \beta b) & =\beta^{m-n} \alpha \cdot \operatorname{pquot}(a, b) \text { and } \\
\operatorname{prem}(\alpha a, \beta b) & =\beta^{m-n+1} \alpha \cdot \operatorname{prem}(a, b) .
\end{aligned}
$$

