to be prepared for 17.01.2017

Exercise 47. Consider the ideals I and J in $\mathbb{R}[x, y, z]$.

$$
\begin{aligned}
I & =\left\langle x s^{2}+x t^{2}+x-2 s, y s^{2}+y t^{2}+y-2 t, z s^{2}+z t^{2}+z-s^{2}-t^{2}+1\right\rangle \cap \mathbb{R}[x, y, z] \\
J & =\left\langle x^{2}+y^{2}+z^{2}-1\right\rangle
\end{aligned}
$$

Determine whether they are equal.
Exercise 48. Let $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle$ be a monomial ideal, and consider the set S of exponents of all monomials in I. For any admissible order $<$, prove that the smallest element of S with respect to $<$ must lie in A.

Exercise 49. Let $I_{1}, \ldots, I_{r}, J \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be ideals. Show the following:

1. $\left(I_{1}+I_{2}\right) J=I_{1} J+I_{2} J$
2. $\left(I_{1} \cdots I_{r}\right)^{m}=I_{1}^{m} \cdots I_{r}^{m} \quad(m \in \mathbb{N})$

Exercise 50.

1. For ideals I, J prove that $\sqrt{I J}=\sqrt{I \cap J}$.
2. Give an example to show that the product of radical ideals ${ }^{1}$ need not be a radical.
3. Demonstrate that $\sqrt{I J}$ can differ from $\sqrt{I} \sqrt{J}$.

Exercise 51. Let $I, J, K \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be ideals. Prove the following:

1. $I: k\left[x_{1}, \ldots, x_{n}\right]=I$
2. $I J \subseteq K \Longleftrightarrow I \subseteq K: J$
3. $J \subseteq I \Longleftrightarrow I: J=k\left[x_{1}, \ldots, x_{n}\right]$
[^0]
[^0]: ${ }^{1}$ An ideal I is called radical or a radical ideal if it coincides with its radical, that is $\sqrt{I}=I$.

