to be prepared for 17.01.2017

Exercise 47. Consider the ideals I and J in $\mathbb{R}[x, y, z]$.

$$\begin{array}{rcl} I &=& \langle xs^2+xt^2+x-2s, \ ys^2+yt^2+y-2t, \ zs^2+zt^2+z-s^2-t^2+1\rangle \cap \mathbb{R}[x,y,z] \\ J &=& \langle x^2+y^2+z^2-1\rangle \end{array}$$

Determine whether they are equal.

Exercise 48. Let $I = \langle x^{\alpha} \mid \alpha \in A \rangle$ be a monomial ideal, and consider the set S of exponents of all monomials in I. For any admissible order <, prove that the smallest element of S with respect to < must lie in A.

Exercise 49. Let $I_1, \ldots, I_r, J \subseteq K[x_1, \ldots, x_n]$ be ideals. Show the following:

- 1. $(I_1 + I_2)J = I_1J + I_2J$
- 2. $(I_1 \cdots I_r)^m = I_1^m \cdots I_r^m \quad (m \in \mathbb{N})$

Exercise 50.

- 1. For ideals I, J prove that $\sqrt{IJ} = \sqrt{I \cap J}$.
- 2. Give an example to show that the product of radical ideals¹ need not be a radical.
- 3. Demonstrate that \sqrt{IJ} can differ from $\sqrt{I}\sqrt{J}$.

Exercise 51. Let $I, J, K \subseteq k[x_1, \ldots, x_n]$ be ideals. Prove the following:

- 1. $I: k[x_1, ..., x_n] = I$
- 2. $IJ \subseteq K \iff I \subseteq K: J$
- 3. $J \subseteq I \iff I : J = k[x_1, \dots, x_n]$