to be prepared for 15.11.2016

Exercise 21. $f, g \in k[x]$, divide f by $g, f=q g+r$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$. Assuming that $\operatorname{deg}(g) \neq 0$ show that

$$
\operatorname{res}_{x}(f, g)=(-1)^{\operatorname{deg}(f) \operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)-\operatorname{deg}(r)} \operatorname{res}_{x}(g, r)
$$

Exercise 22. Use resultants to find the implicit representation, i.e. a polynomial equation just in x, y, and z of the parametrized surface

$$
\begin{aligned}
& x=1+s+t+s t \\
& y=2+s+s t+t^{2} \\
& z=s+t+s^{2}
\end{aligned}
$$

Exercise 23. Prove the following lemma [Lemma 4.2.3]. ${ }^{1}$
Let $a, b \in \mathbb{Z}\left[x_{1}, \ldots, x_{n-2}\right][y][x]^{*}$ and $r \in \mathbb{Z}$ such that $y-r$ does not divide both $\operatorname{lc}_{x}(a)$ and $\operatorname{lc}_{x}(b)$. Let $c=\operatorname{gcd}(a, b)$.

1. $\operatorname{deg}_{x}\left(\operatorname{gcd}\left(a_{y-r}, b_{y-r}\right)\right) \geq \operatorname{deg}_{x}(\operatorname{gcd}(a, b))$.
2. If $y-r \not \backslash \operatorname{res}_{x}\left(\frac{a}{c}, \frac{b}{c}\right)$ then $\operatorname{gcd}\left(a_{y-r}, b_{y-r}\right)=c_{y-r}$.

Exercise 24. Apply the modular algorithm for computing the resultant res $y_{y}(a, b)$ of the polynomials

$$
\begin{aligned}
a(x, y) & =x y^{2}-x^{3} y-2 x^{2} y+x y+2 x^{4}-2 x^{2} \\
b(x, y) & =2 x^{2} y^{2}-4 x^{3} y+4 x^{4}
\end{aligned}
$$

Exercise 25. According to Theorem 4.3.3 a solution of $\operatorname{res}_{x_{r}}(a, b)=0$ can be extended to a common zero of a and b, in case the leading coefficient of a or b is a nonzero constant. This can be achieved by a suitable change of coordinates. Work out an algorithm for solving systems of algebraic equations by resultants along these lines.

[^0]
[^0]: ${ }^{1}$ F. Winkler, Polynomial Algorithms in Computer Algebra

