to be prepared for 15.11.2016

Exercise 21. $f, g \in k[x]$, divide f by g, f = qg + r with $\deg(r) < \deg(g)$. Assuming that $\deg(g) \neq 0$ show that

$$\operatorname{res}_{x}(f,g) = (-1)^{\operatorname{deg}(f)\operatorname{deg}(g)}LC(g)^{\operatorname{deg}(f)-\operatorname{deg}(r)}\operatorname{res}_{x}(g,r).$$

Exercise 22. Use resultants to find the implicit representation, i.e. a polynomial equation just in x, y, and z of the parametrized surface

$$x = 1 + s + t + st$$

$$y = 2 + s + st + t^{2}$$

$$z = s + t + s^{2}$$

Exercise 23. Prove the following lemma [Lemma 4.2.3].¹ Let $a, b \in \mathbb{Z}[x_1, \ldots, x_{n-2}][y][x]^*$ and $r \in \mathbb{Z}$ such that y - r does not divide both $lc_x(a)$ and $lc_x(b)$. Let c = gcd(a, b).

- 1. $\deg_x(\gcd(a_{y-r}, b_{y-r})) \ge \deg_x(\gcd(a, b)).$
- 2. If $y r \not| \operatorname{res}_x(\frac{a}{c}, \frac{b}{c})$ then $\operatorname{gcd}(a_{y-r}, b_{y-r}) = c_{y-r}$.

Exercise 24. Apply the modular algorithm for computing the resultant $res_y(a, b)$ of the polynomials

$$\begin{array}{rcl} a(x,y) &=& xy^2 - x^3y - 2x^2y + xy + 2x^4 - 2x^2 \\ b(x,y) &=& 2x^2y^2 - 4x^3y + 4x^4. \end{array}$$

Exercise 25. According to Theorem 4.3.3 a solution of $\operatorname{res}_{x_r}(a, b) = 0$ can be extended to a common zero of a and b, in case the leading coefficient of a or b is a nonzero constant. This can be achieved by a suitable change of coordinates. Work out an algorithm for solving systems of algebraic equations by resultants along these lines.

¹F. Winkler, Polynomial Algorithms in Computer Algebra