to be prepared for 13.12.2016

Exercise 36. Verify the statement of Lemma 2.3.14 (d) on the basis of the following example: R = K[x,y], $F = \{x^2y^2 + y - 1, x^2y + x\}$, $g_1 = x^5y^5$, $h = x^3y^3$.

Exercise 37. Let $I \subseteq K[x_1, \ldots, x_n]$ be an ideal and G a Gröbner basis for I. Let $g, h \in G$ with $g \neq h$. Prove the following statements.

- 1. If lpp(g)|lpp(h) then $G \setminus \{h\}$ is a Gröbner basis for I.
- 2. If $h \longrightarrow_q h'$ then $(G \setminus \{h\}) \cup \{h'\}$ is a Gröbner basis for I.

Exercise 38. Show that the result of applying the Euclidean Algorithm in K[x] to any pair of polynomials f, g is a reduced Gröbner basis for $\langle f, g \rangle$.

Exercise 39. Consider linear polynomials in $K[x_1, \ldots, x_n]$

$$f_i = a_{i1}x_1 + \dots + a_{in}x_n \qquad 1 \le i \le m$$

and let $A = (a_{ij})$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_1, \ldots, g_r be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_1 > \cdots > x_n$ and show that $\{g_1, \ldots, g_r\}$ is the reduced Groebner basis of $\{f_1, \ldots, f_m\}$.

Exercise 40. Let $I = \langle x^{\alpha} \mid \alpha \in A \rangle$ be a monomial ideal, and consider the set S of exponents of all monomials in I. For any admissible order <, prove that the smallest element of S with respect to < must lie in A.

Exercise 41. Determine whether the polynomial $f = xy^3 - z^2 + y^5 - z^3$ is in the ideal $I = \langle -x^3 + y, x^2y - z \rangle$.