to be prepared for 13.12.2016

Exercise 36. Verify the statement of Lemma 2.3.14 (d) on the basis of the following example: $R=K[x, y], F=\left\{x^{2} y^{2}+y-1, x^{2} y+x\right\}, g_{1}=x^{5} y^{5}$, $h=x^{3} y^{3}$.

Exercise 37. Let $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and G a Gröbner basis for I. Let $g, h \in G$ with $g \neq h$. Prove the following statements.

1. If $\operatorname{lpp}(g) \mid \operatorname{lpp}(h)$ then $G \backslash\{h\}$ is a Gröbner basis for I.
2. If $h \longrightarrow g h^{\prime}$ then $(G \backslash\{h\}) \cup\left\{h^{\prime}\right\}$ is a Gröbner basis for I.

Exercise 38. Show that the result of applying the Euclidean Algorithm in $K[x]$ to any pair of polynomials f, g is a reduced Gröbner basis for $\langle f, g\rangle$.

Exercise 39. Consider linear polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad 1 \leq i \leq m
$$

and let $A=\left(a_{i j}\right)$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_{1}>\cdots>x_{n}$ and show that $\left\{g_{1}, \ldots, g_{r}\right\}$ is the reduced Groebner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Exercise 40. Let $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle$ be a monomial ideal, and consider the set S of exponents of all monomials in I. For any admissible order $<$, prove that the smallest element of S with respect to $<$ must lie in A.

Exercise 41. Determine whether the polynomial $f=x y^{3}-z^{2}+y^{5}-z^{3}$ is in the ideal $I=\left\langle-x^{3}+y, x^{2} y-z\right\rangle$.

