to be prepared for 11.10.2016

Exercise 1. Consider the integers a = 215712, b = 739914. Determine the gcd of a and b and integers s, t such that gcd(a, b) = sa + tb.

Exercise 2. Consider the two polynomials over \mathbb{Z}

$$f(x) = 6x^5 + 2x^4 - 19x^3 - 6x^2 + 15x + 9$$

$$g(x) = 5x^4 - 4x^3 + 2x^2 - 2x - 2.$$

Compute gcd(f(x), g(x)).

Exercise 3. Compute the gcd of the bivariate integer polynomials

$$\begin{array}{rcl} f(x,y) &=& y^6 + xy^5 + x^3y - xy + x^4 - x^2, \\ g(x,y) &=& xy^5 - 2y^5 + x^2y^4 - 2xy^4 + xy^2 + x^2y \end{array}$$

Exercise 4. Explain why the following is or is not a Euclidean domain.

- 1. \mathbb{Z} with degree function $\delta(n) = |n|;$
- 2. \mathbb{Q} with $\delta(r) = |r|;$
- 3. $\mathbb{Z}[i]$ with $\delta(z) = |z|^2$;
- 4. k[x] where k is a field, with $\delta(f) = \deg(f)$;
- 5. k[x, y] where k is a field, with $\delta(f) = \deg(f)$ (the total degree of f).

Exercise 5. Consider the ring \mathbb{Z} of integers and an ideal I generated by finitely many numbers a_1, \ldots, a_n . As \mathbb{Z} is a principal ideal domain there must be a single generator b for I.

- 1. Describe a procedure for finding b when arbitrary generators a_1, \ldots, a_n of I are given as an input.
- 2. Compute a single generator for the ideal $I = \langle 33600, 784080, 214500 \rangle$.