to be prepared for 11.10.2016

Exercise 1. Consider the integers $a=215712, b=739914$. Determine the gcd of a and b and integers s, t such that $\operatorname{gcd}(a, b)=s a+t b$.

Exercise 2. Consider the two polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2
\end{aligned}
$$

Compute $\operatorname{gcd}(f(x), g(x))$.
Exercise 3. Compute the gcd of the bivariate integer polynomials

$$
\begin{aligned}
& f(x, y)=y^{6}+x y^{5}+x^{3} y-x y+x^{4}-x^{2} \\
& g(x, y)=x y^{5}-2 y^{5}+x^{2} y^{4}-2 x y^{4}+x y^{2}+x^{2} y
\end{aligned}
$$

Exercise 4. Explain why the following is or is not a Euclidean domain.

1. \mathbb{Z} with degree function $\delta(n)=|n|$;
2. \mathbb{Q} with $\delta(r)=|r|$;
3. $\mathbb{Z}[i]$ with $\delta(z)=|z|^{2}$;
4. $k[x]$ where k is a field, with $\delta(f)=\operatorname{deg}(f)$;
5. $k[x, y]$ where k is a field, with $\delta(f)=\operatorname{deg}(f)$ (the total degree of f).

Exercise 5. Consider the ring \mathbb{Z} of integers and an ideal I generated by finitely many numbers a_{1}, \ldots, a_{n}. As \mathbb{Z} is a principal ideal domain there must be a single generator b for I.

1. Describe a procedure for finding b when arbitrary generators a_{1}, \ldots, a_{n} of I are given as an input.
2. Compute a single generator for the ideal $I=\langle 33600,784080,214500\rangle$.
