to be prepared for 10.01.2017

Exercise 42. Compute the normed reduced Gröbner basis for the ideal

$$
I=\left\langle x z-3 x^{2}+x+6 x^{3}+1, x^{2}+y^{2}-2, x^{5}-6 x^{3}+x^{2}-1\right\rangle
$$

in $\mathbb{Q}[x, y, z]$ w.r.t. the lexicographic ordering with $x<y<z$. What is $\operatorname{dim} \mathbb{Q}[x, y, z] / I$?

Exercise 43. Let I be the ideal in $\mathbb{Q}[x, y, z]$ generated by

$$
\begin{aligned}
& f_{1}=x^{4}-2 x+z+1 \\
& f_{2}=x^{2}+y^{2}-2 \\
& f_{3}=x^{5}-6 x^{3}+x^{2}-1
\end{aligned}
$$

1. How many solutions does the system $f_{1}=f_{2}=f_{3}=0$ have?
2. Give a basis for the vector space $\mathbb{Q}[x, y, z] / I$ over \mathbb{Q}.

Exercise 44. Consider the following system of algebraic equations

$$
\begin{aligned}
& f_{1}=x^{2}+y^{2}+z^{2}-t^{2} \\
& f_{2}=x^{2}-y^{2}+z^{2}-t^{2} \\
& f_{3}=y^{3}-6 y^{2}+12 y-6
\end{aligned}
$$

Decide whether it has a solution.
Exercise 45. Given are the polynomials in $\mathbb{Q}[x, y, z, t]$

$$
\begin{aligned}
& f_{1}=x y z t+x^{2} y-z \\
& f_{2}=x^{3} y-x y+z^{4} t \\
& f_{3}=x^{2}+y^{2}-z^{2}-t^{2}
\end{aligned}
$$

Compute a Gröbner basis of the ideal $\left\langle f_{1}, f_{2}, f_{3}\right\rangle \cap \mathbb{Q}[z, t]$.
Exercise 46. Consider the ideal $I \subseteq \mathbb{R}[x, y]$ generated by the polynomials

$$
x^{2}+y^{2}-1, \quad x^{2}-y^{2}-1
$$

Decide whether I coincides with its radical.

