## to be prepared for 08.11.2016

Exercise 16. Let $R$ be a unique factorization domain, $r \in R$ and $x, y$ indeterminates. Consider the ring $S=R[y] /\langle y-r\rangle[x]$. Show that any two elements of $S$ have a greatest common divisor in $S$.

Exercise 17. Consider the bivariate polynomials

$$
\begin{aligned}
& f(x, y)=x^{2} y^{3}-5 x y^{3}+6 y^{3}-6 x y^{2}+18 y^{2}+2 x y-4 y-12 \\
& g(x, y)=x^{2} y^{3}+3 x y^{3}-10 y^{3}-6 x y^{2}-30 y^{2}-4 x y+8 y+24 .
\end{aligned}
$$

Compute the gcd of $f$ and $g$ by the modular algorithm. Take care of leading coefficients.

Exercise 18. Consider polyomials $f, g \in k[x]$ of positive degrees $m, n$ respectively. Let $I$ denote the ideal in $k[x]$ generated by $f$, and let $\mu$ denote the multiplication map

$$
\mu: k[x] / I \longrightarrow k[x] / I, \quad h+I \mapsto g h+I .
$$

Demonstrate that $\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} \operatorname{det}(\mu)$.
Exercise 19. Let $f, g \in k[x]$ be polynomials whose roots are $\zeta_{1}, \ldots, \zeta_{m}$ and $\eta_{1}, \ldots, \eta_{n}$ respectively. Prove that

$$
\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\zeta_{i}-\eta_{j}\right)
$$

Exercise 20. $f, g \in k[x]$, divide $f$ by $g, f=q g+r$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$. Assuming that $\operatorname{deg}(g) \neq 0$ show that

$$
\operatorname{res}_{x}(f, g)=(-1)^{\operatorname{deg}(f) \operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)-\operatorname{deg}(r)} \operatorname{res}_{x}(g, r)
$$

