Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria
kutsia@risc.uni-linz.ac.at

Contents

Substitutions

Unifiers

Unification Algorithm

Unification

Unification algorithm: The heart of the computation model of
logic programs.

Substitution

Definition (Substitution)
A substitution is a finite set of the form

0={vi—t,...,Vhp— o}

» v;’s: distinct variables.
> l's: terms with t; £ v;.
» Binding: v; — ;.

Substitution Application

Definition (Substitution application)
Substitution § = {v4 — t,..., vy, — t,} applied to an

expression E,
EO

Simultaneously replacing each occurrence of v; in E with {;.

E09 is called the instance of E wrt 6.

E; is more general than E; if E; is an instance of E; (wrt some
substitution).

Substitution Application

Example (Application)

E = p(x.y,f(a)).
0={y— x,x— b}
E0 = p(b, x, f(a)).

Note that x was not replaced second time.

Composition

Definition (Substitution Composition)
Given two substitutions

0={vi—t,...,Vh— o}
o={uy— S1,...,Un+> Sm},

their composition 9o is obtained from the set

{V‘I — t‘]O‘,...,Vn — tnO‘,
by deleting
» all u; — sy’s with uj € {vy,...,vp},

» all v; = tio’s with v; = fio.

Substitution Composition

Example (Composition)

0={x—f(y),y— z}.
oc={x—ay—bz—y}
Oo = {x — f(b),z— y}.

Empty Substitution

Empty substitution, denoted ¢:

» Empty set of bindings.
» Ee = E for all expressions E.

Properties

Theorem

Example (Properties)

Example
Given:
0={x—1y)y— 2z}
oc={xw—az~— b}.
E = p(x,y,9(z)).
Then

o = {x — f(y),y — b,z — b}.
E0 = p(f(y),z,9(2)).

(Ef)o = p(f(y), b, g(b)).

E(6a) = p(f(y), b, 9(b)).

Renaming Substitution

Definition (Renaming Substitution)
{X1 — Y1,...,Xn — yn} IS @ renaming substitution iff y;’s are
distinct variables.

Renaming an Expression

Definition (Renaming Substitution for an Expression)
Let V be the set of variables of an expression E.

A substitution
0={X1 = Y1,...,Xn— Yn}
is a renaming substitution for E iff
» @ is a renaming substitution, and
» {X{,...,Xn} € V,and
> (VN {x1,. o) 0y, yn =0

Renaming an Expression

Example

» E=f(x,ay,2)

» o1 ={X— Uy, Yy — U2, Z — Us} iS a renaming subst. for E.
» oo = {X — Uy, y — U} is a renaming subst. for E.

» o3 ={X— Y,y — X,Z+— u} is a renaming subst. for E.

» 04 = {X — y,z — u} is not a renaming subst. for E.

» o5 = {X — U,y — U, Z+— u} is not a renaming subst.

Variants

Definition (Variant)
Expression E and expression F are variants iff there exist
substitutions # and ¢ such that

» EO = F and
» Fo=E.

Variants and Renaming

Theorem
Expression E and expression F are variants iff there exist
renaming substitutions 6 and o such that

» E60 =F and

» Fo=E.

Instantiation Quasi-Ordering

Definition (More General Substitution)

A substitution 6 is more general than a substitution o, written
f < o, iff there exists a substitution A such that

o\ =o.

The relation < on substitutions is called the instantiation
quasi-ordering.

Instantiation Quasi-Ordering

Example (More General)
Let 0 and o be the substitutions:

0={x—y,u—fly 2)}
o={x—2zy—z,u— f(z,2)}.

Then 6 < ¢ because)\ = o where

A={y— z}.

Unifier

Definition (Unifier of Expressions)
A substitution 6 is a unifier of expressions E and F iff

E6 = F6.

Unifier

Example (Unifier of Expressions)
Let E and F be two expressions:

E = f(Xv b,g(Z)),
F = 1(f(y).y,9(u)).

Then 0 = {x — f(b),y — b,z — u} is a unifier of E and F:

E¢ = f(f(b), b, g(u)),
Fo = f(f(b), b, g(u)).

Unification Problem, Unifier

Definition (Unification Problem)
Unification problem is a finite set of equations (expression
pairs).

Definition (Unifier)
o is a unifier of a unification problem

{E‘] ; F1,’EnéFn}
iff o is a unifier of E; and F; foreach 1 </ < n, i.e., iff

E10':F1J,
)

EnO': FnU

Most General Unifier

Definition (MGU)

A unifier 6 of E and F is most general iff 6 is more general than
any other unifier of £ and F.

Unifiers and MGuU

Example (Unifiers)
Let E and F be two expressions:

E = f(x,b,9(2)),
F =f(f(y),y,9(v)).
Unifiers of E and F (infinitely many):
01 = {x+— f(b),y — b,z u},
0o = {x— f(b),y — b,u— z},
03 = {x— f(b),y — b,z a,u a},
04 ={x— f(b),y — b,z— u,w— d},

Unifiers and MGuU

Example (MGU)

Let E and F be expressions from the previous example:
E =1f(x,b,9(2)), F=1(f(y).y,9(u)).

MGU’s of E and F:

01 ={xw— f(b),y — b,z +— u},
0o = {x — f(b),y — b,uw z}.

01 < 0o: 0o = 01\ with A :{U>—>Z}.
0> < 04: 01 = 020 with Ao = {Z — U}.

Note: Ay and A, are renaming substitutions.

Equivalence of mgu-s

Theorem
Most general unifier of two expressions is unique up to variable
renaming

Unification Algorithm

Rule-based approach.
» General form of rules:

P.o= Q; 0 or
P, o— 1.

» 1 denotes failure.
» o and ¢ are substitutions.
» P and Q are unification problems: {E; = Fy,..., Ep = Fp}.

Unification Rules

Trivial:
{s£s}UP; 0 = P; 0.
Decomposition:

{f(S1,...,Sn)?:f(t1,...,tn)}UPI; g —

|f f(S‘],,Sn) # f(t‘],,tn)
Symbol Clash:

{f(s1,...,sn) = g(ty,....tm)}UP; 0 = L.
if f 4 g.

Unification Rules (Contd.)

Orient:
{t=X}UP; 0= {x =t} UP; o,
if t is not a variable.
Occurs Check:
XL tHhUP; 0 = 1,
if x occursin fand x # t.
Variable Elimination:
{XZthUP; 0 = P9; o0,

if x does not occur in t, and 6 = {x — t}.

Unification Algorithm

In order to unify expressions E; and E:
1. Create initial system {E; £ Eo};e.
2. Apply successively unification rules.

Termination

Theorem (Termination)
The unification algorithm terminates either with | or with (); o.

Soundness

Theorem (Soundness)
If P; e =71 (; o then o is a unifier of P.

Completeness

Theorem (Completeness)

For any unifier 6 of P the unification algorithm finds a unifier o
of P such that o < 6.

Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm
computes their MGU.

Examples

Example (Failure)
Unify p(f(a), g(x)) and p(y, y).

{p(f(a),g(x)) = pP(y,¥)}: € =>Dec
{fla) =y, g(x) Ty} e =or
{y =1(a),9(x) £y} e = varmi

{9(x) = f(a)}; {y — f(a)} = symai

1

[~

Examples

Example (Success)
Unify p(a, x, h(g(2))) and p(z, h(y), h(y)).

{p(a, x, h(g(2))) = p(z, h(y), h(y))}; € =>Dec
{a=z,x = h(y),h(9(2)) = h(y)}; e =or
{zZ=ax = h(y),h(g(2)) = h(y)}; € = vael
{x = h(y),h(9(a)) = h(y)}; {z — a} = vari
{h(g(a)) = h(y)}; {z+ a,x = h(y)} =Dec
{9(a) =y} {z— a,x = h(y)} =0

{y Zg(a)}; {z— a,x— h(y)} = vael
0; {z— a,x h(g(a)).y — g(a)}.

Examples

Example (Failure)
Unify p(x, x) and p(y, f(y)).

{p(x,x) = p(y,f(¥))}: € = Dec
{x7:y,x?: f(y)}; € == VarEl

{y = f(y)}: {x = ¥y} =0cccn
1

Previous Example on PROLOG

Example (Infinite Terms)
- p (X, X)=p (Y, £(Y)).

X = £(x%), ¥ = £(x%).

In some versions of PROLOG output looks like this:
X = £(E(E(EE(EEEE(EC.)))))))))

Occurrence Check

PRoLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

Example
less (X, s (X)) .
foo:-less (s (Y),Y).

?- foo.

Yes

	Substitutions
	Unifiers
	Unification Algorithm

