Logic Programming Unification

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Contents

Substitutions

Unifiers

Unification Algorithm

Unification

Unification algorithm: The heart of the computation model of logic programs.

<□ > < @ > < E > < E > E のQ @

Substitution

Definition (Substitution)

A substitution is a finite set of the form

$$\theta = \{\mathbf{v}_1 \mapsto t_1, \ldots, \mathbf{v}_n \mapsto t_n\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- v_i's: distinct variables.
- t_i 's: terms with $t_i \neq v_i$.
- Binding: $v_i \mapsto t_i$.

Substitution Application

Definition (Substitution application) Substitution $\theta = \{v_1 \mapsto t_1, \dots, v_n \mapsto t_n\}$ applied to an expression *E*,

Eθ

Simultaneously replacing each occurrence of v_i in E with t_i .

 $E\theta$ is called the *instance* of E wrt θ .

 E_1 is more general than E_2 if E_2 is an instance of E_1 (wrt some substitution).

(ロ) (同) (三) (三) (三) (○) (○)

Substitution Application

Example (Application)

$$E = p(x, y, f(a)).$$

$$\theta = \{y \mapsto x, x \mapsto b\}.$$

$$E\theta = p(b, x, f(a)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Note that *x* was not replaced second time.

Composition

Definition (Substitution Composition)

Given two substitutions

$$\theta = \{ \mathbf{v}_1 \mapsto \mathbf{t}_1, \dots, \mathbf{v}_n \mapsto \mathbf{t}_n \}$$

$$\sigma = \{ \mathbf{u}_1 \mapsto \mathbf{s}_1, \dots, \mathbf{u}_m \mapsto \mathbf{s}_m \},$$

their *composition* $\theta \sigma$ is obtained from the set

$$\{v_1 \mapsto t_1 \sigma, \dots, v_n \mapsto t_n \sigma, \\ u_1 \mapsto s_1, \dots, u_m \mapsto s_m\}$$

by deleting

• all $u_i \mapsto s_i$'s with $u_i \in \{v_1, \ldots, v_n\}$,

• all
$$v_i \mapsto t_i \sigma$$
's with $v_i = t_i \sigma$.

Substitution Composition

Example (Composition)

$$\theta = \{ x \mapsto f(y), y \mapsto z \}.$$

$$\sigma = \{ x \mapsto a, y \mapsto b, z \mapsto y \}.$$

$$\theta \sigma = \{ x \mapsto f(b), z \mapsto y \}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Empty Substitution

Empty substitution, denoted ε :

- Empty set of bindings.
- $E\varepsilon = E$ for all expressions E.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Properties

Theorem

$$\begin{aligned} \theta \varepsilon &= \varepsilon \theta = \theta. \\ (E\theta)\sigma &= E(\theta\sigma). \\ (\theta\sigma)\lambda &= \theta(\sigma\lambda). \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example (Properties)

Example Given:

$$\theta = \{ x \mapsto f(y), y \mapsto z \}.$$

$$\sigma = \{ x \mapsto a, z \mapsto b \}.$$

$$E = p(x, y, g(z)).$$

Then

$$\theta\sigma = \{x \mapsto f(y), y \mapsto b, z \mapsto b\}.$$

$$E\theta = p(f(y), z, g(z)).$$

$$(E\theta)\sigma = p(f(y), b, g(b)).$$

$$E(\theta\sigma) = p(f(y), b, g(b)).$$

Renaming Substitution

Definition (Renaming Substitution)

 $\{x_1 \mapsto y_1, \ldots, x_n \mapsto y_n\}$ is a *renaming substitution* iff y_i 's are distinct variables.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition (Renaming Substitution for an Expression) Let V be the set of variables of an expression E.

A substitution

$$\theta = \{x_1 \mapsto y_1, \ldots, x_n \mapsto y_n\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a renaming substitution for E iff

• θ is a renaming substitution, and

•
$$\{x_1,\ldots,x_n\} \subseteq V$$
, and

$$\bullet (V \setminus \{x_1, \ldots, x_n\}) \cap \{y_1, \ldots, y_n\} = \emptyset.$$

Renaming an Expression

Example

・ロト・4回ト・4回ト・4回ト・4回ト

Variants

Definition (Variant)

Expression *E* and expression *F* are *variants* iff there exist substitutions θ and σ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- $E\theta = F$ and
- $F\sigma = E$.

Variants and Renaming

Theorem

Expression E and expression F are variants iff there exist renaming substitutions θ and σ such that

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

► $F\sigma = E$.

Definition (More General Substitution)

A substitution θ is *more general* than a substitution σ , written $\theta \leq \sigma$, iff there exists a substitution λ such that

 $\theta \lambda = \sigma.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The relation \leq on substitutions is called the *instantiation quasi-ordering*.

Instantiation Quasi-Ordering

Example (More General)

Let θ and σ be the substitutions:

$$\theta = \{ x \mapsto y, u \mapsto f(y, z) \},\$$

$$\sigma = \{ x \mapsto z, y \mapsto z, u \mapsto f(z, z) \}.$$

Then $\theta \leq \sigma$ because $\theta \lambda = \sigma$ where

$$\lambda = \{ \mathbf{y} \mapsto \mathbf{z} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition (Unifier of Expressions)

A substitution θ is a *unifier* of expressions *E* and *F* iff

$$\boldsymbol{E}\boldsymbol{\theta}=\boldsymbol{F}\boldsymbol{\theta}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Unifier

Example (Unifier of Expressions)

Let *E* and *F* be two expressions:

E = f(x, b, g(z)),F = f(f(y), y, g(u)).

Then $\theta = \{x \mapsto f(b), y \mapsto b, z \mapsto u\}$ is a unifier of *E* and *F*:

 $E\theta = f(f(b), b, g(u)),$ $F\theta = f(f(b), b, g(u)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Unification Problem, Unifier

Definition (Unification Problem)

Unification problem is a finite set of equations (expression pairs).

Definition (Unifier)

 σ is a unifier of a unification problem

$$\{E_1 \stackrel{?}{=} F_1, \ldots, E_n \stackrel{?}{=} F_n\}$$

iff σ is a unifier of E_i and F_i for each $1 \le i \le n$, i.e., iff

$$E_1 \sigma = F_1 \sigma,$$

...,
$$E_n \sigma = F_n \sigma$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Most General Unifier

Definition (MGU)

A unifier θ of *E* and *F* is *most general* iff θ is more general than any other unifier of *E* and *F*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Unifiers and MGU

Example (Unifiers)

Let *E* and *F* be two expressions:

E = f(x, b, g(z)),F = f(f(y), y, g(u)).

Unifiers of *E* and *F* (infinitely many):

. . .

$$\begin{aligned} \theta_1 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto u \}, \\ \theta_2 &= \{ x \mapsto f(b), y \mapsto b, u \mapsto z \}, \\ \theta_3 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto a, u \mapsto a \}, \\ \theta_4 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto u, w \mapsto d \}, \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Unifiers and MGU

Example (MGU)

Let *E* and *F* be expressions from the previous example:

$$E = f(x, b, g(z)), F = f(f(y), y, g(u)).$$

MGU's of E and F:

$$\begin{aligned} \theta_1 &= \{ x \mapsto f(b), y \mapsto b, z \mapsto u \}, \\ \theta_2 &= \{ x \mapsto f(b), y \mapsto b, u \mapsto z \}. \end{aligned}$$

A D F A 同 F A E F A E F A Q A

 $\begin{array}{ll} \theta_1 \leq \theta_2 \colon & \theta_2 = \theta_1 \lambda_1 \text{ with } \lambda_1 = \{ u \mapsto z \}. \\ \theta_2 \leq \theta_1 \colon & \theta_1 = \theta_2 \lambda_2 \text{ with } \lambda_2 = \{ z \mapsto u \}. \end{array}$

Note: λ_1 and λ_2 are renaming substitutions.

Equivalence of mgu-s

Theorem

Most general unifier of two expressions is unique up to variable renaming

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Unification Algorithm

Rule-based approach.

General form of rules:

$$\begin{array}{l} \mathsf{P}; \ \sigma \Longrightarrow \mathsf{Q}; \ \theta \ \text{ or } \\ \mathsf{P}; \ \sigma \Longrightarrow \bot. \end{array}$$

- \perp denotes failure.
- σ and θ are substitutions.
- ▶ *P* and *Q* are unification problems: $\{E_1 \stackrel{?}{=} F_1, \ldots, E_n \stackrel{?}{=} F_n\}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Unification Rules

Trivial:

$$\{\mathbf{s} \stackrel{?}{=} \mathbf{s}\} \cup \mathbf{P}'; \ \sigma \Longrightarrow \mathbf{P}'; \ \sigma.$$

Decomposition:

$$\{f(\boldsymbol{s}_1,\ldots,\boldsymbol{s}_n)\stackrel{?}{=} f(t_1,\ldots,t_n)\} \cup \boldsymbol{P}'; \ \sigma \Longrightarrow \\ \{\boldsymbol{s}_1\stackrel{?}{=} t_1,\ldots,\boldsymbol{s}_n\stackrel{?}{=} t_n\} \cup \boldsymbol{P}'; \ \sigma.$$

if
$$f(s_1,\ldots,s_n) \neq f(t_1,\ldots,t_n)$$
.

Symbol Clash:

$$\{f(s_1,\ldots,s_n) \stackrel{?}{=} g(t_1,\ldots,t_m)\} \cup P'; \ \sigma \Longrightarrow \bot.$$
if $f \neq g$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Unification Rules (Contd.)

Orient:

$$\{t\stackrel{?}{=} x\}\cup P';\ \sigma \Longrightarrow \{x\stackrel{?}{=} t\}\cup P';\ \sigma,$$

if t is not a variable.

Occurs Check:

$$\{x \stackrel{?}{=} t\} \cup P'; \ \sigma \Longrightarrow \bot,$$

if *x* occurs in *t* and $x \neq t$.

Variable Elimination:

$$\{x \stackrel{?}{=} t\} \cup P'; \ \sigma \Longrightarrow P'\theta; \ \sigma\theta,$$

if *x* does not occur in *t*, and $\theta = \{x \mapsto t\}$.

・ロト・四ト・日本・日本・日本・日本

Unification Algorithm

In order to unify expressions E_1 and E_2 :

- 1. Create initial system $\{E_1 \stackrel{?}{=} E_2\}; \varepsilon$.
- 2. Apply successively unification rules.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Termination

Theorem (Termination)

The unification algorithm terminates either with \perp or with \emptyset ; σ .

Soundness

Theorem (Soundness) If P; $\varepsilon \Longrightarrow^+ \emptyset$; σ then σ is a unifier of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Completeness

Theorem (Completeness)

For any unifier θ of P the unification algorithm finds a unifier σ of P such that $\sigma \leq \theta$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Major Result

Theorem (Main Theorem)

If two expressions are unifiable then the unification algorithm computes their MGU.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Examples

Example (Failure) Unify p(f(a), g(x)) and p(y, y).

$$\{p(f(a), g(x)) \stackrel{?}{=} p(y, y)\}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}}$$

$$\{f(a) \stackrel{?}{=} y, g(x) \stackrel{?}{=} y\}; \ \varepsilon \Longrightarrow_{\mathsf{Or}}$$

$$\{y \stackrel{?}{=} f(a), g(x) \stackrel{?}{=} y\}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}}$$

$$\{g(x) \stackrel{?}{=} f(a)\}; \ \{y \mapsto f(a)\} \Longrightarrow_{\mathsf{SymC}}$$

$$\bot$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Examples

Example (Success)

Unify p(a, x, h(g(z))) and p(z, h(y), h(y)).

$$\{p(a, x, h(g(z))) \stackrel{?}{=} p(z, h(y), h(y))\}; \ \varepsilon \Longrightarrow_{\mathsf{Dec}}$$

$$\{a \stackrel{?}{=} z, x \stackrel{?}{=} h(y), h(g(z)) \stackrel{?}{=} h(y)\}; \ \varepsilon \Longrightarrow_{\mathsf{Or}}$$

$$\{z \stackrel{?}{=} a, x \stackrel{?}{=} h(y), h(g(z)) \stackrel{?}{=} h(y)\}; \ \varepsilon \Longrightarrow_{\mathsf{VarEl}}$$

$$\{x \stackrel{?}{=} h(y), h(g(a)) \stackrel{?}{=} h(y)\}; \ \{z \mapsto a\} \Longrightarrow_{\mathsf{VarEl}}$$

$$\{h(g(a)) \stackrel{?}{=} h(y)\}; \ \{z \mapsto a, x \mapsto h(y)\} \Longrightarrow_{\mathsf{Dec}}$$

$$\{g(a) \stackrel{?}{=} y\}; \ \{z \mapsto a, x \mapsto h(y)\} \Longrightarrow_{\mathsf{Or}}$$

$$\{y \stackrel{?}{=} g(a)\}; \ \{z \mapsto a, x \mapsto h(y)\} \Longrightarrow_{\mathsf{VarEl}}$$

$$\emptyset; \ \{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\}.$$

Examples

Example (Failure) Unify p(x, x) and p(y, f(y)).

$$\{p(x, x) \stackrel{?}{=} p(y, f(y))\}; \varepsilon \Longrightarrow_{\mathsf{Dec}} \{x \stackrel{?}{=} y, x \stackrel{?}{=} f(y)\}; \varepsilon \Longrightarrow_{\mathsf{VarEl}} \{y \stackrel{?}{=} f(y)\}; \{x \mapsto y\} \Longrightarrow_{\mathsf{OccCh}} \bot$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Previous Example on PROLOG

Example (Infinite Terms)

?- p(X, X) = p(Y, f(Y)).

X = f(**), Y = f(**).

In some versions of PROLOG output looks like this: X = f(f(f(f(f(f(f(f(f(...)))))))))

Y = f(f(f(f(f(f(f(f(f(...))))))))))

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PROLOG unification algorithm skips Occurrence Check.
Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Occurrence Check

Example

less(X, s(X)).
foo:-less(s(Y), Y).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

?- foo.

Yes