
Logic Programming
Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.uni-linz.ac.at

Contents

Substitutions

Unifiers

Unification Algorithm

Unification

Unification algorithm: The heart of the computation model of
logic programs.

Substitution

Definition (Substitution)
A substitution is a finite set of the form

θ = {v1 7→ t1, . . . , vn 7→ tn}

I vi ’s: distinct variables.
I ti ’s: terms with ti 6= vi .
I Binding: vi 7→ ti .

Substitution Application

Definition (Substitution application)
Substitution θ = {v1 7→ t1, . . . , vn 7→ tn} applied to an
expression E ,

Eθ

Simultaneously replacing each occurrence of vi in E with ti .

Eθ is called the instance of E wrt θ.

E1 is more general than E2 if E2 is an instance of E1 (wrt some
substitution).

Substitution Application

Example (Application)

E = p(x , y , f (a)).
θ = {y 7→ x , x 7→ b}.

Eθ = p(b, x , f (a)).

Note that x was not replaced second time.

Composition

Definition (Substitution Composition)
Given two substitutions

θ = {v1 7→ t1, . . . , vn 7→ tn}
σ = {u1 7→ s1, . . . ,um 7→ sm},

their composition θσ is obtained from the set

{v1 7→ t1σ, . . . , vn 7→ tnσ,
u1 7→ s1, . . . ,um 7→ sm}

by deleting
I all ui 7→ si ’s with ui ∈ {v1, . . . , vn},
I all vi 7→ tiσ’s with vi = tiσ.

Substitution Composition

Example (Composition)

θ = {x 7→ f (y), y 7→ z}.
σ = {x 7→ a, y 7→ b, z 7→ y}.
θσ = {x 7→ f (b), z 7→ y}.

Empty Substitution

Empty substitution, denoted ε:

I Empty set of bindings.
I Eε = E for all expressions E .

Properties

Theorem

θε = εθ = θ.

(Eθ)σ = E(θσ).

(θσ)λ = θ(σλ).

Example (Properties)

Example
Given:

θ = {x 7→ f (y), y 7→ z}.
σ = {x 7→ a, z 7→ b}.
E = p(x , y ,g(z)).

Then

θσ = {x 7→ f (y), y 7→ b, z 7→ b}.
Eθ = p(f (y), z,g(z)).

(Eθ)σ = p(f (y),b,g(b)).
E(θσ) = p(f (y),b,g(b)).

Renaming Substitution

Definition (Renaming Substitution)
{x1 7→ y1, . . . , xn 7→ yn} is a renaming substitution iff yi ’s are
distinct variables.

Renaming an Expression

Definition (Renaming Substitution for an Expression)
Let V be the set of variables of an expression E .

A substitution
θ = {x1 7→ y1, . . . , xn 7→ yn}

is a renaming substitution for E iff
I θ is a renaming substitution, and
I {x1, . . . , xn} ⊆ V , and
I (V \ {x1, . . . , xn}) ∩ {y1, . . . , yn} = ∅.

Renaming an Expression

Example

I E = f (x ,a, y , z)
I σ1 = {x 7→ u1, y 7→ u2, z 7→ u3} is a renaming subst. for E .
I σ2 = {x 7→ u1, y 7→ u2} is a renaming subst. for E .
I σ3 = {x 7→ y , y 7→ x , z 7→ u} is a renaming subst. for E .
I σ4 = {x 7→ y , z 7→ u} is not a renaming subst. for E .
I σ5 = {x 7→ u, y 7→ u, z 7→ u} is not a renaming subst.

Variants

Definition (Variant)
Expression E and expression F are variants iff there exist
substitutions θ and σ such that

I Eθ = F and
I Fσ = E .

Variants and Renaming

Theorem
Expression E and expression F are variants iff there exist
renaming substitutions θ and σ such that

I Eθ = F and
I Fσ = E.

Instantiation Quasi-Ordering

Definition (More General Substitution)
A substitution θ is more general than a substitution σ, written
θ ≤ σ, iff there exists a substitution λ such that

θλ = σ.

The relation ≤ on substitutions is called the instantiation
quasi-ordering.

Instantiation Quasi-Ordering

Example (More General)
Let θ and σ be the substitutions:

θ = {x 7→ y ,u 7→ f (y , z)},
σ = {x 7→ z, y 7→ z,u 7→ f (z, z)}.

Then θ ≤ σ because θλ = σ where

λ = {y 7→ z}.

Unifier

Definition (Unifier of Expressions)
A substitution θ is a unifier of expressions E and F iff

Eθ = Fθ.

Unifier

Example (Unifier of Expressions)
Let E and F be two expressions:

E = f (x ,b,g(z)),
F = f (f (y), y ,g(u)).

Then θ = {x 7→ f (b), y 7→ b, z 7→ u} is a unifier of E and F :

Eθ = f (f (b),b,g(u)),
Fθ = f (f (b),b,g(u)).

Unification Problem, Unifier

Definition (Unification Problem)
Unification problem is a finite set of equations (expression
pairs).

Definition (Unifier)
σ is a unifier of a unification problem

{E1
?= F1, . . . ,En

?= Fn}

iff σ is a unifier of Ei and Fi for each 1 ≤ i ≤ n, i.e., iff

E1σ = F1σ,

· · · ,
Enσ = Fnσ

Most General Unifier

Definition (MGU)

A unifier θ of E and F is most general iff θ is more general than
any other unifier of E and F .

Unifiers and MGU

Example (Unifiers)
Let E and F be two expressions:

E = f (x ,b,g(z)),
F = f (f (y), y ,g(u)).

Unifiers of E and F (infinitely many):

θ1 = {x 7→ f (b), y 7→ b, z 7→ u},
θ2 = {x 7→ f (b), y 7→ b,u 7→ z},
θ3 = {x 7→ f (b), y 7→ b, z 7→ a,u 7→ a},
θ4 = {x 7→ f (b), y 7→ b, z 7→ u,w 7→ d},
· · ·

Unifiers and MGU

Example (MGU)

Let E and F be expressions from the previous example:

E = f (x ,b,g(z)), F = f (f (y), y ,g(u)).

MGU’s of E and F :

θ1 = {x 7→ f (b), y 7→ b, z 7→ u},
θ2 = {x 7→ f (b), y 7→ b,u 7→ z}.

θ1 ≤ θ2: θ2 = θ1λ1 with λ1 = {u 7→ z}.
θ2 ≤ θ1: θ1 = θ2λ2 with λ2 = {z 7→ u}.

Note: λ1 and λ2 are renaming substitutions.

Equivalence of mgu-s

Theorem
Most general unifier of two expressions is unique up to variable
renaming

Unification Algorithm

Rule-based approach.

I General form of rules:

P; σ =⇒ Q; θ or
P; σ =⇒ ⊥.

I ⊥ denotes failure.
I σ and θ are substitutions.
I P and Q are unification problems: {E1

?= F1, . . . ,En
?= Fn}.

Unification Rules

Trivial:
{s ?= s} ∪ P ′; σ =⇒ P ′; σ.

Decomposition:

{f (s1, . . . , sn)
?= f (t1, . . . , tn)} ∪ P ′; σ =⇒

{s1
?= t1, . . . , sn

?= tn} ∪ P ′; σ.

if f (s1, . . . , sn) 6= f (t1, . . . , tn).

Symbol Clash:

{f (s1, . . . , sn)
?= g(t1, . . . , tm)} ∪ P ′; σ =⇒ ⊥.

if f 6= g.

Unification Rules (Contd.)

Orient:

{t ?= x} ∪ P ′; σ =⇒ {x ?= t} ∪ P ′; σ,

if t is not a variable.

Occurs Check:

{x ?= t} ∪ P ′; σ =⇒ ⊥,

if x occurs in t and x 6= t .

Variable Elimination:

{x ?= t} ∪ P ′; σ =⇒ P ′θ; σθ,

if x does not occur in t , and θ = {x 7→ t}.

Unification Algorithm

In order to unify expressions E1 and E2:
1. Create initial system {E1

?= E2}; ε.
2. Apply successively unification rules.

Termination

Theorem (Termination)
The unification algorithm terminates either with ⊥ or with ∅;σ.

Soundness

Theorem (Soundness)
If P; ε =⇒+ ∅; σ then σ is a unifier of P.

Completeness

Theorem (Completeness)
For any unifier θ of P the unification algorithm finds a unifier σ
of P such that σ ≤ θ.

Major Result

Theorem (Main Theorem)
If two expressions are unifiable then the unification algorithm
computes their MGU.

Examples

Example (Failure)
Unify p(f (a),g(x)) and p(y , y).

{p(f (a),g(x)) ?= p(y , y)}; ε =⇒Dec

{f (a) ?= y ,g(x) ?= y}; ε =⇒Or

{y ?= f (a),g(x) ?= y}; ε =⇒VarEl

{g(x) ?= f (a)}; {y 7→ f (a)} =⇒SymCl

⊥

Examples

Example (Success)
Unify p(a, x ,h(g(z))) and p(z,h(y),h(y)).

{p(a, x ,h(g(z))) ?= p(z,h(y),h(y))}; ε =⇒Dec

{a ?= z, x ?= h(y),h(g(z)) ?= h(y)}; ε =⇒Or

{z ?= a, x ?= h(y),h(g(z)) ?= h(y)}; ε =⇒VarEl

{x ?= h(y),h(g(a)) ?= h(y)}; {z 7→ a} =⇒VarEl

{h(g(a)) ?= h(y)}; {z 7→ a, x 7→ h(y)} =⇒Dec

{g(a) ?= y}; {z 7→ a, x 7→ h(y)} =⇒Or

{y ?= g(a)}; {z 7→ a, x 7→ h(y)} =⇒VarEl

∅; {z 7→ a, x 7→ h(g(a)), y 7→ g(a)}.

Examples

Example (Failure)
Unify p(x , x) and p(y , f (y)).

{p(x , x) ?= p(y , f (y))}; ε =⇒Dec

{x ?= y , x ?= f (y)}; ε =⇒VarEl

{y ?= f (y)}; {x 7→ y} =⇒OccCh

⊥

Previous Example on PROLOG

Example (Infinite Terms)
?- p(X,X)=p(Y,f(Y)).

X = f(**), Y = f(**).

In some versions of PROLOG output looks like this:
X = f(f(f(f(f(f(f(f(f(f(...))))))))))

Y = f(f(f(f(f(f(f(f(f(f(...))))))))))

Occurrence Check

PROLOG unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

Example
less(X,s(X)).
foo:-less(s(Y),Y).

?- foo.

Yes

	Substitutions
	Unifiers
	Unification Algorithm

