
First-Order Logic

First-Order Language

I Syntax
I Semantics

Syntax

I Alphabet
I Terms
I Formulas

Alphabet

A first-order alphabet consists of the following disjoint sets of
symbols:

I A countable set of variables V.
I For each n ≥ 0, a set of n-ary function symbols Fn.

Elements of F0 are called constants.
I For each n ≥ 0, a set of n-ary predicate symbols Pn.
I Logical connectives ¬, ∨, ∧,⇒,⇔.
I Quantifiers ∃, ∀.
I Parenthesis ‘(’, ‘)’, and comma ‘,’.

Sometimes the truth constants T and F, and square brackets
are also included in the alphabet.

Alphabet

Notation:
I x, y, z for variables.
I f , g for function symbols.
I a, b, c for constants.
I p, q for predicate symbols.

Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.
I Nothing else is a term.

I Alternative notation for compound terms: f [t1, . . . , tn].
I s, t, r are used to denote terms.

Example

I plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

I father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.
I Nothing else is a term.

I Alternative notation for compound terms: f [t1, . . . , tn].
I s, t, r are used to denote terms.

Example

I plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

I father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.
I Nothing else is a term.

I Alternative notation for compound terms: f [t1, . . . , tn].
I s, t, r are used to denote terms.

Example

I plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

I father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.
I Nothing else is a term.

I Alternative notation for compound terms: f [t1, . . . , tn].
I s, t, r are used to denote terms.

Example

I plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

I father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

Formulas

Definition
I If t1, . . . , tn are terms and p ∈ Pn, then p(t1, . . . , tn) is a

formula. It is called an atomic formula.
I T and F are formulas (when the alphabet contains these

symbols). They are also atomic formulas.
I If A is a formula, (¬A) is a formula.
I If A and B are formulas, then (A ∨ B), (A ∧ B), (A⇒ B), and

(A⇔ B) are formulas.
I If A is a formula, then (∃x.A) and (∀x.A) are formulas.
I Nothing else is a formula.

I Alternative notation: p[t1, . . . , tn], ∀
x

A, ∃
x

A.

I A,B are used to denote formulas.

Formulas

Definition
I If t1, . . . , tn are terms and p ∈ Pn, then p(t1, . . . , tn) is a

formula. It is called an atomic formula.
I T and F are formulas (when the alphabet contains these

symbols). They are also atomic formulas.
I If A is a formula, (¬A) is a formula.
I If A and B are formulas, then (A ∨ B), (A ∧ B), (A⇒ B), and

(A⇔ B) are formulas.
I If A is a formula, then (∃x.A) and (∀x.A) are formulas.
I Nothing else is a formula.

I Alternative notation: p[t1, . . . , tn], ∀
x

A, ∃
x

A.

I A,B are used to denote formulas.

Eliminating Parentheses

I Excessive use of parentheses often can be avoided by
introducing binding order.

I ¬, ∀,∃ bind stronger than ∨.
I ∨ binds stronger than ∧.
I ∧ binds stronger than⇒ and⇔.
I Furthermore, omit the outer parentheses and associate
∨,∧,⇒,⇔ to the right.

Eliminating Parentheses

Example
The formula

(∀y.(∀x.((p(x)) ∧ (¬r(y)))⇒ ((¬q(x)) ∨ (A ∨ B)))))

due to binding order can be rewritten into

(∀y.(∀x.(p(x) ∧ ¬r(y)⇒ ¬q(x) ∨ (A ∨ B))))

which thanks to the convention of the association to the right
and omitting the outer parentheses further simplifies to

∀y.∀x.(p(x) ∧ ¬r(y)⇒ ¬q(x) ∨ A ∨ B).

Free and Bound Variables

I A variable is free in a formula A if it is not quantified in A.
I Otherwise, it is bound.
I In ∀x.p(x, y), the variable x is bound and y is free.
I In ∀x.

(
p(x)⇒ ∃y.q(f (x, z))

)
, the variables x and y are bound

and z is free.
I In p(x)⇒ ∀x.q(x), the variable x is both free and bound.

Example

Identify constants, variables (free, bound), quantifiers, function
symbols, predicate symbols, atoms, terms, formulas:

1. ∀x. x + 1 ≥ x.

2. ¬∃x. eq(0, f (x)).

3. ∀x. ∃y.
(

eq(y, f (x)) ∧ ∀z.
(
eq(z, f (x))⇒ eq(y, z)

))
.

Example

Identify constants, variables (free, bound), quantifiers, function
symbols, predicate symbols, atoms, terms, formulas:

1. ∀x. x + 1 ≥ x.
2. ¬∃x. eq(0, f (x)).

3. ∀x. ∃y.
(

eq(y, f (x)) ∧ ∀z.
(
eq(z, f (x))⇒ eq(y, z)

))
.

Example

Identify constants, variables (free, bound), quantifiers, function
symbols, predicate symbols, atoms, terms, formulas:

1. ∀x. x + 1 ≥ x.
2. ¬∃x. eq(0, f (x)).

3. ∀x. ∃y.
(

eq(y, f (x)) ∧ ∀z.
(
eq(z, f (x))⇒ eq(y, z)

))
.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational_number(x)⇒ real_number(x))
2. There exists a number that is prime.

∃x. prime_number(x)
3. For every number x, there exists a number y such that

x < y.
∀x.∃y. x < y

Assume:
I rational_number, real_number, prime_number: unary

predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational_number(x)⇒ real_number(x))

2. There exists a number that is prime.
∃x. prime_number(x)

3. For every number x, there exists a number y such that
x < y.

∀x.∃y. x < y

Assume:
I rational_number, real_number, prime_number: unary

predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational_number(x)⇒ real_number(x))
2. There exists a number that is prime.

∃x. prime_number(x)
3. For every number x, there exists a number y such that

x < y.
∀x.∃y. x < y

Assume:
I rational_number, real_number, prime_number: unary

predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational_number(x)⇒ real_number(x))
2. There exists a number that is prime.

∃x. prime_number(x)

3. For every number x, there exists a number y such that
x < y.

∀x.∃y. x < y

Assume:
I rational_number, real_number, prime_number: unary

predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational_number(x)⇒ real_number(x))
2. There exists a number that is prime.

∃x. prime_number(x)
3. For every number x, there exists a number y such that

x < y.

∀x.∃y. x < y

Assume:
I rational_number, real_number, prime_number: unary

predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational_number(x)⇒ real_number(x))
2. There exists a number that is prime.

∃x. prime_number(x)
3. For every number x, there exists a number y such that

x < y.
∀x.∃y. x < y

Assume:
I rational_number, real_number, prime_number: unary

predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor

is 0.

¬∃x.zero .= succ(x)
2. For each natural number there exists exactly one

immediate successor natural number.

∀x.∃y.(y .= succ(x) ∧ ∀z.(z .= succ(x)⇒ y .= z))

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x.(¬(x .= zero)⇒ ∃y.(y .= pred(x) ∧ ∀z.(z .= pred(x)⇒ y .= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.=: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor

is 0.
¬∃x.zero .= succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

∀x.∃y.(y .= succ(x) ∧ ∀z.(z .= succ(x)⇒ y .= z))

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x.(¬(x .= zero)⇒ ∃y.(y .= pred(x) ∧ ∀z.(z .= pred(x)⇒ y .= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.=: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor

is 0.
¬∃x.zero .= succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

∀x.∃y.(y .= succ(x) ∧ ∀z.(z .= succ(x)⇒ y .= z))
3. For each nonzero natural number there exists exactly one

immediate predecessor natural number.
∀x.(¬(x .= zero)⇒ ∃y.(y .= pred(x) ∧ ∀z.(z .= pred(x)⇒ y .= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.=: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor

is 0.
¬∃x.zero .= succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

∀x.∃y.(y .= succ(x) ∧ ∀z.(z .= succ(x)⇒ y .= z))

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x.(¬(x .= zero)⇒ ∃y.(y .= pred(x) ∧ ∀z.(z .= pred(x)⇒ y .= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.=: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor

is 0.
¬∃x.zero .= succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

∀x.∃y.(y .= succ(x) ∧ ∀z.(z .= succ(x)⇒ y .= z))
3. For each nonzero natural number there exists exactly one

immediate predecessor natural number.

∀x.(¬(x .= zero)⇒ ∃y.(y .= pred(x) ∧ ∀z.(z .= pred(x)⇒ y .= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.=: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor

is 0.
¬∃x.zero .= succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

∀x.∃y.(y .= succ(x) ∧ ∀z.(z .= succ(x)⇒ y .= z))
3. For each nonzero natural number there exists exactly one

immediate predecessor natural number.
∀x.(¬(x .= zero)⇒ ∃y.(y .= pred(x) ∧ ∀z.(z .= pred(x)⇒ y .= z)))

Assume:
I zero: constant
I succ, pred: unary function symbols.
I

.=: binary predicate symbol.

Semantics

I Meaning of a first-order language consists of an universe
and an appropriate meaning of each symbol.

I This pair is called structure.
I Structure fixes interpretation of function and predicate

symbols.
I Meaning of variables is determined by a variable

assignment.
I Interpretation of terms and formulas.

Structure

I Structure: a pair (D, I).
I D is a nonempty universe, the domain of interpretation.
I I is an interpretation function defined on D that fixes the

meaning of each symbol associating
I to each f ∈ Fn an n-ary function fI : Dn → D,

(in particular, cI ∈ D for each constant c)
I to each p ∈ Pn different from .=, an n-ary relation pI on D.

Variable Assignment

I A structure S = (D, I) is given.
I Variable assignment σS maps each x ∈ V into an element

of D: σS(x) ∈ D.
I Given a variable x, an assignment ϑS is called an x-variant

of σS iff ϑS(y) = σS(y) for all y 6= x.

Interpretation of Terms

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of a term t under S and σS , ValS,σS (t):
I ValS,σS (x) = σS(x).
I ValS,σS (f (t1, . . . , tn)) = fI(ValS,σS (t1), . . . ,ValS,σS (tn)).

Interpretation of Terms

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of a term t under S and σS , ValS,σS (t):
I ValS,σS (x) = σS(x).
I ValS,σS (f (t1, . . . , tn)) = fI(ValS,σS (t1), . . . ,ValS,σS (tn)).

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of true,
false (truth values):

I ValS,σS (s .= t) = true iff ValS,σS (s) = ValS,σS (t).
I ValS,σS (p(t1, . . . , tn)) = true iff

(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .
I ValS,σS (T) = true, ValS,σS (F) = false.

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of true,
false (truth values):

I ValS,σS (s .= t) = true iff ValS,σS (s) = ValS,σS (t).
I ValS,σS (p(t1, . . . , tn)) = true iff

(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .
I ValS,σS (T) = true, ValS,σS (F) = false.

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of true,
false (truth values):

I ValS,σS (s .= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .

I ValS,σS (T) = true, ValS,σS (F) = false.

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of true,
false (truth values):

I ValS,σS (s .= t) = true iff ValS,σS (s) = ValS,σS (t).
I ValS,σS (p(t1, . . . , tn)) = true iff

(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .

I ValS,σS (T) = true, ValS,σS (F) = false.

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of true,
false (truth values):

I ValS,σS (s .= t) = true iff ValS,σS (s) = ValS,σS (t).
I ValS,σS (p(t1, . . . , tn)) = true iff

(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .
I ValS,σS (T) = true, ValS,σS (F) = false.

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.

I ValS,σS (A ∨ B) = true iff
ValS,σS (A) = true or ValS,σS (B) = true.

I ValS,σS (A ∧ B) = true iff
ValS,σS (A) = true and ValS,σS (B) = true.

I ValS,σS (A⇒ B) = true iff
ValS,σS (A) = false or ValS,σS (B) = true.

I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.

I ValS,σS (A ∧ B) = true iff
ValS,σS (A) = true and ValS,σS (B) = true.

I ValS,σS (A⇒ B) = true iff
ValS,σS (A) = false or ValS,σS (B) = true.

I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.

I ValS,σS (A⇒ B) = true iff
ValS,σS (A) = false or ValS,σS (B) = true.

I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.

I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).

I ValS,σS (∃x.A) = true iff
ValS,ϑS (A) = true for some x-variant ϑS of σS .

I ValS,σS (∀x.A) = true iff
ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .

I ValS,σS (∀x.A) = true iff
ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false (truth values):

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

I A structure S = (D, I) is given.

I The value of a formula A under S is either true or false:
I ValS(A) = true iff ValS , σS(A) = true for all σS .

I S is called a model of A iff ValS(A) = true.
I Written �S A.

Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .

I S is called a model of A iff ValS(A) = true.
I Written �S A.

Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.

I Written �S A.

Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.
I Written �S A.

Example

I Formula: ∀x.(p(x)⇒ q(f (x), a))

I Define S = (D, I) as
I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

I If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I Hence, �S A.

Example

I Formula: ∀x.(p(x)⇒ q(f (x), a))
I Define S = (D, I) as

I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

I If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I Hence, �S A.

Example

I Formula: ∀x.(p(x)⇒ q(f (x), a))
I Define S = (D, I) as

I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

I If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.

I If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I Hence, �S A.

Example

I Formula: ∀x.(p(x)⇒ q(f (x), a))
I Define S = (D, I) as

I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

I If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.

I Hence, �S A.

Example

I Formula: ∀x.(p(x)⇒ q(f (x), a))
I Define S = (D, I) as

I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

I If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.
I Hence, �S A.

Example

Find the truth value of the formula ∀x. ∃y. x + y > c, in the
structure S = (D, I) defined as:

I D = {0, 1}.
I cI = 0.
I +I = +Z (addition on integers).
I >I=>Z (strictly greater than).

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.

I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.

I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.

I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-valid

Valid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-valid

Valid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.
I The notions extend to (multi)sets of formulas.
I For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

Valid
Non-valid

sat Unsat

I ∀x.p(x)⇒ ∃y.p(y) is valid.
I p(a)⇒ ¬∃x.p(x) is satisfiable non-valid.
I ∀x.p(x) ∧ ∃y.¬p(y) is unsatisfiable.

Logical Consequence

Definition
A formula A is a logical consequence of the formulas B1, . . . ,Bn,
if every model of B1 ∧ · · · ∧ Bn is a model of A.

Example

I mortal(socrates) is a logical consequence of
∀x.(person(x)⇒ mortal(x)) and person(socrates).

I cooked(apple) is a logical consequence of
∀x.(¬cooked(x)⇒ tasty(x)) and ¬tasty(apple).

I genius(einstein) is not a logical consequence of
∃x.person(x) ∧ genius(x) and person(einstein).

Logical Consequence

Definition
A formula A is a logical consequence of the formulas B1, . . . ,Bn,
if every model of B1 ∧ · · · ∧ Bn is a model of A.

Example

I mortal(socrates) is a logical consequence of
∀x.(person(x)⇒ mortal(x)) and person(socrates).

I cooked(apple) is a logical consequence of
∀x.(¬cooked(x)⇒ tasty(x)) and ¬tasty(apple).

I genius(einstein) is not a logical consequence of
∃x.person(x) ∧ genius(x) and person(einstein).

Logical Equivalence

Definition
Two formulas are logically equivalent if they are a logical
consequence of each other (i.e., they have exactly the same
models).

Normal Forms

Definition
A formula A is in a negation normal form (NNF) if

I A does not contain⇒ and⇔, and
I if A contains a subformula ¬B, then B is an atomic formula.

Example

I p(a) ∨ ∃x.¬q(x) is in NNF.
I p(a) ∨ ¬∃x.q(x) is not in NNF.
I ¬p(a) ∨ ¬q(b) is in NNF.
I ¬(p(a) ∧ q(b)) is not in NNF.
I ∃x.(p(x) ∧ ¬q(x)) is in NNF.
I ∃x.(p(x)⇒ ¬q(x)) is not in NNF.

Normal Forms

Definition
A formula A is in a negation normal form (NNF) if

I A does not contain⇒ and⇔, and
I if A contains a subformula ¬B, then B is an atomic formula.

Example

I p(a) ∨ ∃x.¬q(x) is in NNF.
I p(a) ∨ ¬∃x.q(x) is not in NNF.
I ¬p(a) ∨ ¬q(b) is in NNF.
I ¬(p(a) ∧ q(b)) is not in NNF.
I ∃x.(p(x) ∧ ¬q(x)) is in NNF.
I ∃x.(p(x)⇒ ¬q(x)) is not in NNF.

Normal Forms

Definition
A formula is in prenex normal form (PNF), if it has the form
Q1 x1.Q2 x2. · · ·Qn xn.M, n ≥ 0, where

I each Qi is either ∀ or ∃,
I x1, . . . xn are distinct variables,
I M (called the matrix) does not contain quantifiers.

Example

I ∃x.(p(x)⇒ ¬q(a)) is in PNF.
I p(a) ∨ ¬∃x.q(x) is not in PNF.
I ¬p(a) ∨ ¬q(b) is in NNF.
I ∀x.(¬(p(x) ∧ ∃y.q(y))) is not in PNF.
I ∀x.∃y.∀z.(¬(p(x, y) ∧ q(y, z))) is in PNF.
I ∀x.¬∃y.∀z.(¬(p(x, y) ∧ q(y, z))) is not in PNF.

Normal Forms

Definition
A formula is in prenex normal form (PNF), if it has the form
Q1 x1.Q2 x2. · · ·Qn xn.M, n ≥ 0, where

I each Qi is either ∀ or ∃,
I x1, . . . xn are distinct variables,
I M (called the matrix) does not contain quantifiers.

Example

I ∃x.(p(x)⇒ ¬q(a)) is in PNF.
I p(a) ∨ ¬∃x.q(x) is not in PNF.
I ¬p(a) ∨ ¬q(b) is in NNF.
I ∀x.(¬(p(x) ∧ ∃y.q(y))) is not in PNF.
I ∀x.∃y.∀z.(¬(p(x, y) ∧ q(y, z))) is in PNF.
I ∀x.¬∃y.∀z.(¬(p(x, y) ∧ q(y, z))) is not in PNF.

Normal Forms

Propositions:
I For each formula A there exists a formula B in NNF such

that A and B are logically equivalent.
I Such a B is called an NNF of A.
I An NNF of a formula is not unique.

I For each formula A there exists a formula B in PNF such
that A and B are logically equivalent.

I Such a B is called a PNF of A.
I A PNF of a formula is not unique.

Normal Forms

Propositions:
I For each formula A there exists a formula B in NNF such

that A and B are logically equivalent.
I Such a B is called an NNF of A.
I An NNF of a formula is not unique.

I For each formula A there exists a formula B in PNF such
that A and B are logically equivalent.

I Such a B is called a PNF of A.
I A PNF of a formula is not unique.

Transformation into a Prenex Normal Form

Idea:
Define transformations

A B C,

where B is an NNF of A, and C is a PNF of B and of A.

Transformation into a Prenex Normal Form

First set of rules, to get an NNF of a formula.
Rules are applied exhaustively.

1. Eliminate of⇔ and⇒:

A⇔ B (A⇒ B) ∧ (B⇒ A)
A⇒ B ¬A ∨ B

2. Eliminate double negation and push the negation inside:

¬(¬A) A

¬(A ∨ B) ¬A ∧ ¬B

¬(A ∧ B) ¬A ∨ ¬B

¬∀x.A ∃x.¬A

¬∃x.A ∀x.¬A

Transformation into a Prenex Normal Form

Second set of rules, to get an PNF of a formula in NNF.
Rules in 4 are applied exhaustively.

3. Rename of all bound variables.
4. Move the quantifiers to the left of the entire formula:

Qx.A[x] ∨ B Qx.(A[x] ∨ B)
Qx.A[x] ∧ B Qx.(A[x] ∧ B)
Qx.B ∨ A[x] Qx.(B ∨ A[x])
Qx.B ∧ A[x] Qx.(B ∧ A[x])

where B does not contain free occurrences of x.
(A[x] means that x occurs freely in A.)

Transformation into a Conjunctive Normal Form

I CNF: A formula of the form C1 ∧ · · · ∧ Cn, where each Ci is a
disjunction of literals: Li

1 ∨ · · · ∨ Li
k.

I If Q1x1. · · ·Qnxn.M is in prenex normal form, then M is in
NNF.

I M consists of disjunctions and conjunctions of literals.
I CNF is obtained from NNF by distributing disjunction over

conjunction:

A ∨ (B ∧ C) (A ∨ B) ∧ (A ∨ C)
(B ∧ C) ∨ A (B ∨ A) ∧ (C ∨ A)

Examples

Prove that

∀x.p(x)⇒ q

is logically equivalent to

∃x.(p(x)⇒ q)

by bringing them to PNF with the matrix in CNF:

Skolemization

Replace existentially quantified variables by Skolem functions:
I The formula Q1x1. · · ·Qnxn.M is in PNF and M is in CNF.
I Skolemization is performed by repeatedly applying the

following rule:

∀x1. · · · ∀xn.∃y.Q1z1. · · ·Qmzm.M[y]

∀x1. · · · ∀xn.Q1z1. · · ·Qmzm.M[f (x1, . . . , xn)]

where f is a new function symbol of arity n with n ≥ 0.

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))

 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))

 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))

 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))

 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))

 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))

 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))

 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧
(¬p(f1(x), z) ∨ q(x, f1(x), u)))

 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧
(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))

 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧
(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∃y.(¬∃z.(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.¬(p(x, z) ∨ p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.(∀z.(¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.((¬p(x, z) ∧ ¬p(y, z)) ∨ ∃u.q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∧ ¬p(y, z)) ∨ q(x, y, u))
 ∀x.∃y.∀z.∃u.((¬p(x, z) ∨ q(x, y, u)) ∧ (¬p(y, z) ∨ q(x, y, u)))
 ∀x.∀z.∃u.((¬p(x, z) ∨ q(x, f1(x), u))∧

(¬p(f1(x), z) ∨ q(x, f1(x), u)))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z))))

Example

∀x.∃y.(∃z.(p(x, z) ∨ p(y, z))⇒ ∃u.q(x, y, u))
 ∀x.∀z.((¬p(x, z) ∨ q(x, f1(x), f2(x, z)))∧

(¬p(f1(x), z) ∨ q(x, f1(x), f2(x, z)))).

A Property of Skolem Normal Form

Theorem
Let A be a formula and B be its Skolem normal form. Then A is
unsatisfiable iff B is unsatisfiable.

I A and B are, in general, not equivalent.
I Example:

I A = ∃x.p(x), B = p(a).
I S = ({1, 2}, I).
I aI = 1.
I pI = {2}.
I Then ValS(A) = true but ValS(B) = false.

A Property of Skolem Normal Form

Theorem
Let A be a formula and B be its Skolem normal form. Then A is
unsatisfiable iff B is unsatisfiable.

I A and B are, in general, not equivalent.

I Example:
I A = ∃x.p(x), B = p(a).
I S = ({1, 2}, I).
I aI = 1.
I pI = {2}.
I Then ValS(A) = true but ValS(B) = false.

A Property of Skolem Normal Form

Theorem
Let A be a formula and B be its Skolem normal form. Then A is
unsatisfiable iff B is unsatisfiable.

I A and B are, in general, not equivalent.
I Example:

I A = ∃x.p(x), B = p(a).
I S = ({1, 2}, I).
I aI = 1.
I pI = {2}.
I Then ValS(A) = true but ValS(B) = false.

