First-Order Logic



First-Order Language

» Syntax
» Semantics



Syntax

» Alphabet
» Terms
» Formulas



Alphabet

A first-order alphabet consists of the following disjoint sets of
symbols:

» A countable set of variables V.

» For each n > 0, a set of n-ary function symbols F".
Elements of F° are called constants.

» For each n > 0, a set of n-ary predicate symbols P".
» Logical connectives —, V, A, =, <.

» Quantifiers 3, V.

» Parenthesis ‘(’, )’, and comma ‘,.

Sometimes the truth constants T and IF, and square brackets
are also included in the alphabet.



Alphabet

Notation:
» x,v,z for variables.
» f, g for function symbols.
» a, b, c for constants.
» p,q for predicate symbols.



Terms

Definition

» A variable is a term.

» Ifty,...,t, areterms and f € F", then f (1, .

» Nothing else is a term.

.., 1p) is aterm.



Terms

Definition
» A variable is a term.

> Ifty,...,t, areterms and f € F", then f(t,,...,t,) is a term.
» Nothing else is a term.

» Alternative notation for compound terms: f[z, ..., .
» s,t,r are used to denote terms.



Terms

Definition
» A variable is a term.

> Ifty,...,t, areterms and f € F", then f(t,,...,t,) is a term.
» Nothing else is a term.

» Alternative notation for compound terms: f[z, ..., .
» s,t,r are used to denote terms.

Example

» plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.



Terms

Definition
» A variable is a term.

> Ifty,...,t, areterms and f € F", then f(t,,...,t,) is a term.
» Nothing else is a term.

» Alternative notation for compound terms: f[z, ..., .
» s,t,r are used to denote terms.

Example

» plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

> father(father(John)) is a term, where father is a unary
function symbol and John is a constant.



Formulas

Definition
» Ifty,...,t, areterms and p € P, then p(ty,...,t,) is a
formula. It is called an atomic formula.

» T and F are formulas (when the alphabet contains these
symbols). They are also atomic formulas.

» If Ais aformula, (—A) is a formula.

» If A and B are formulas, then (A V B), (A AB), (A = B), and
(A & B) are formulas.

» If Ais a formula, then (3x.A) and (Vx.A) are formulas.
» Nothing else is a formula.



Formulas

Definition
» Ifty,...,t, areterms and p € P, then p(ty,...,t,) is a
formula. It is called an atomic formula.

» T and F are formulas (when the alphabet contains these
symbols). They are also atomic formulas.

» If Ais aformula, (—A) is a formula.

» If A and B are formulas, then (A V B), (A AB), (A = B), and
(A & B) are formulas.

» If Ais a formula, then (3x.A) and (Vx.A) are formulas.
» Nothing else is a formula.

» Alternative notation: p[t, ..., 1,], VA, JA.

» A, B are used to denote formulas.



Eliminating Parentheses

v

Excessive use of parentheses often can be avoided by
introducing binding order.

—,V, d bind stronger than V.
V binds stronger than A.
A binds stronger than = and <.

Furthermore, omit the outer parentheses and associate
V, A, =, < to the right.

vV v.vY



Eliminating Parentheses

Example
The formula

(Vy.(vx.((p(x)) A (=r(y))) = ((mq(x)) V (A V B)))))
due to binding order can be rewritten into
(Vy.(Vx.(p(x) A =r(y) = —q(x) V (A V B))))

which thanks to the convention of the association to the right
and omitting the outer parentheses further simplifies to

Vy.Vx.(p(x) A —r(y) = —q(x) VAV B).



Free and Bound Variables

A variable is free in a formula A if it is not quantified in A.
Otherwise, it is bound.
In Vx.p(x,y), the variable x is bound and y is free.

In Vx. (p(x) = 3y.q(f(x,2))), the variables x and y are bound
and z is free.

vV v v Y
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In p(x) = Vx.¢q(x), the variable x is both free and bound.



Example

Identify constants, variables (free, bound), quantifiers, function
symbols, predicate symbols, atoms, terms, formulas:

1. Ve.x+1>x.



Example

Identify constants, variables (free, bound), quantifiers, function
symbols, predicate symbols, atoms, terms, formulas:

1. Ve.x+1>x.
2. —=3x. eq(0, f(x)).



Example

Identify constants, variables (free, bound), quantifiers, function
symbols, predicate symbols, atoms, terms, formulas:

1. Ve.x+1>x.
2. —=3x. eq(0, f(x)).

3. Vx. Ely.(eq(y,f(x)) A Vz.(eq(z,f(x)) = eq(y, z)))



Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

Assume:

» rational_number, real_number, prime_number: unary
predicate symbols.

» <: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

Vx.(rational_number(x) = real_number(x))

Assume:

» rational_number, real_number, prime_number: unary
predicate symbols.

» <: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.
Vx.(rational_number(x) = real_number(x))

2. There exists a number that is prime.

Assume:

» rational_number, real_number, prime_number: unary
predicate symbols.

» <: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.
Vx.(rational_number(x) = real_number(x))
2. There exists a number that is prime.

Ax. prime_number(x)

Assume:

» rational_number, real_number, prime_number: unary
predicate symbols.

» <: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.
Vx.(rational_number(x) = real_number(x))
2. There exists a number that is prime.
Ax. prime_number(x)

3. For every number x, there exists a number y such that
x <y.

Assume:

» rational_number, real_number, prime_number: unary
predicate symbols.

» <: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:

1. Every rational number is a real number.

Vx.(rational_number(x) = real_number(x))
2. There exists a number that is prime.
Ax. prime_number(x)
3. For every number x, there exists a number y such that
x <y
Vx.dy.x <y

Assume:

» rational_number, real_number, prime_number: unary
predicate symbols.

» <: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:

1. There is no natural number whose immediate successor
is 0.

Assume:
» zero. constant
» succ, pred: unary function symbols.
» =: binary predicate symbol.
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Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor
is 0.
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Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor
is 0.
—dx.zero = succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

Assume:
» zero. constant
» succ, pred: unary function symbols.
» =: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor
is 0.
—dx.zero = succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

Vx.3y.(y = succ(x) AVz.(z = succ(x) =y =z))
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» zero. constant
» succ, pred: unary function symbols.
» =: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor
is 0.
—dx.zero = succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

Vx.3y.(y = succ(x) AVz.(z = succ(x) =y = 2))
3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

Assume:
» zero. constant
» succ, pred: unary function symbols.
» =: binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. There is no natural number whose immediate successor
is 0.
—dx.zero = succ(x)

2. For each natural number there exists exactly one
immediate successor natural number.

Vx.3y.(y = succ(x) AVz.(z = succ(x) =y = 2))
3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

Vx.(—(x = zero) = Jy.(y = pred(x) AVz.(z = pred(x) = y = 7)))
Assume:
» zero. constant
» succ, pred: unary function symbols.
» =: binary predicate symbol.



Semantics

» Meaning of a first-order language consists of an universe
and an appropriate meaning of each symbol.

» This pair is called structure.

» Structure fixes interpretation of function and predicate
symbols.

» Meaning of variables is determined by a variable
assignment.

» Interpretation of terms and formulas.



Structure

» Structure: a pair (D, I).
» D is a nonempty universe, the domain of interpretation.

» [ is an interpretation function defined on D that fixes the
meaning of each symbol associating
» to eachf € F" an n-ary function f; : D" — D,
(in particular, ¢; € D for each constant ¢)
» to each p € P" different from =, an n-ary relation p; on D.



Variable Assignment

» A structure S = (D, 1) is given.

» Variable assignment os maps each x € V into an element
of D: os(x) € D.

» Given a variable x, an assignment s is called an x-variant
of os iff ¥s(y) = os(y) for all y # x.



Interpretation of Terms

» A structure S = (D, I) and a variable assignment o5 are
given.



Interpretation of Terms

» A structure S = (D, I) and a variable assignment o5 are
given.
» Value of a term runder S and o, Vals ,4(1):

> Vals,gs (x) = 0'3()6).
> Vals o (f(t1, ... tn) = filVals o5 (1), ..., Vals o5 (tn)).



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
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false (truth values):



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Value of an atomic formula under S and o is one of true,
false (truth values):
> Vals os(s = 1) = true iff Vals o4 (s) = Vals o (1).



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Value of an atomic formula under S and o is one of true,
false (truth values):
> Vals os(s = 1) = true iff Vals o4 (s) = Vals o (1).
» Vals o (p(t1,- .., t,)) = true iff
(Vals o5 (t1), ..., Vals -5 (t)) € p1.



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Value of an atomic formula under S and o is one of true,
false (truth values):
> Vals os(s = 1) = true iff Vals o4 (s) = Vals o (1).
» Vals o (p(t1,- .., t,)) = true iff

(Vals o5 (t1), ..., Vals -5 (t)) € p1.
> Vals o5 (T) = true, Vals ,. (F) = false.



Interpretation of Formulas

» A structure S = (D,I) and a variable assignment o5 are
given.
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Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Values of compound formulas under S and o are also
either true or false (truth values):
> Vals o5 (—A) = true iff Vals »4(A) = false.
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» A structure S = (D, I) and a variable assignment o5 are
given.
» Values of compound formulas under S and o5 are also
either true or false (truth values):
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» Vals,o5(AV B) = true iff
Vals, o5 (A) = true ot Vals ., (B) = true.
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Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Values of compound formulas under S and o5 are also
either true or false (truth values):
> Vals o5 (—A) = true iff Vals »4(A) = false.
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Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.

» Values of compound formulas under S and o5 are also
either true or false (truth values):

>

>

Vals o (—A) = true iff Vals »5(A) = false.
Vals,» (A V B) = true iff

Vals, o5 (A) = true ot Vals ., (B) = true.
Vals, o5 (A N\ B) = true iff

Vals o5 (A) = true and Vals . (B) = true.
Vals o5 (A = B) = true iff

Vals -5 (A) = false or Vals ,.(B) = true.
Vals o5 (A < B) = true iff Vals ,,(A) = Vals ,5(B).



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Values of compound formulas under S and o5 are also
either true or false (truth values):
> Vals o5 (—A) = true iff Vals »4(A) = false.
» Vals,o5(AV B) = true iff
Vals, o5 (A) = true ot Vals ., (B) = true.
» Vals,os (A A B) = true iff
Vals o5 (A) = true and Vals . (B) = true.
> Vals o5 (A = B) = true iff
Vals -5 (A) = false or Vals ,.(B) = true.
» Vals o (A < B) = true iff Vals 4 (A) = Vals -5 (B).
> Vals,os (Ix.A) = true iff
Vals 95 (A) = true for some x-variant Js of os.



Interpretation of Formulas

» A structure S = (D, I) and a variable assignment o5 are
given.
» Values of compound formulas under S and o are also
either true or false (truth values):
> Vals o5 (—A) = true iff Vals »4(A) = false.
» Vals,o5(AV B) = true iff
Vals, o5 (A) = true ot Vals ., (B) = true.
» Vals,os (A A B) = true iff
Vals o5 (A) = true and Vals . (B) = true.
> Vals o5 (A = B) = true iff
Vals -5 (A) = false or Vals ,.(B) = true.
» Vals o (A < B) = true iff Vals 4 (A) = Vals -5 (B).
> Vals,os (Ix.A) = true iff
Vals 95 (A) = true for some x-variant Js of os.
» Vals .4 (Vx.A) = true iff
Vals 95 (A) = true for all x-variants ¥s of os.
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Interpretation of Formulas

» A structure S = (D, 1) is given.
» The value of a formula A under S is either true or false:
> Vals(A) = true iff Valg,05(A) = true for all os.

» S is called a model of A iff Vals(A) = true.



Interpretation of Formulas

» A structure S = (D, 1) is given.

» The value of a formula A under S is either true or false:
> Vals(A) = true iff Valg,05(A) = true for all os.

» S is called a model of A iff Vals(A) = true.

» Written Fg A.



Example

» Formula: Vx.(p(x) = ¢(f(x),a))



Example

» Formula: Vx.(p(x) = q(f(x),a))
» Define S = (D,I) as

» D=1{1,2},

> a =1,

» (1) =2,£(2) =1,
> pr=1{2},

> qr = {(la 1)7 (172)a (272)}



Example

» Formula: Vx.(p(x) = q(f(x),a))
» Define S = (D,I) as

» D=1{1,2},

> aq; =1,

> fi(1) =2,/1(2) =1,
> pr=1{2},

» qr={(1,1),(1,2),(2,2)}.
> If os(x) = 1, then Vals 4 (Vx.(p(x) = q(f(x),a))) = true.



Example

v

Formula: Vx.(p(x) = q(f(x),a))
Define S = (D,I) as
» D=1{1,2},
> aq; =1,
> fi(l) =2,£(2) = 1,
» pr={2},
» qr={(1,1),(1,2),(2,2)}.
If os(x) = 1, then Vals o, (Vx.(p(x) = q(f(x),a))) = true.
If os5(x) = 2, then Vals »,(Vx.(p(x) = q(f(x),a))) = true.

v

v

v



Example

v

Formula: Vx.(p(x) = q(f(x),a))
Define S = (D,I) as

» D=1{1,2},

> a; =1,

> fi(l) =2,£(2) = 1,

» pr={2},

» qr={(1,1),(1,2),(2,2)}.
If os(x) = 1, then Vals o, (Vx.(p(x) = q(f(x),a))) = true.
If os5(x) = 2, then Vals »,(Vx.(p(x) = q(f(x),a))) = true.
Hence, Eg A.

v

v

v

v



Example

Find the truth value of the formula Vx. 3y. x +y > ¢, in the
structure S = (D, I) defined as:

» D=1{0,1}.

» ¢c; =0.

» +; = +z (addition on integers).

> >,=>, (strictly greater than).



Validity, Unsatisfiability

» A formula A is valid, if Es A for all S.
» Written F A.
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» A formula A is valid, if s A for all S.

» Written F A.

» A formula A is unsatisfiable, if =5 A for no S.

» If A is valid, then —A is unsatisfiable and vice versa.



Validity, Unsatisfiability

» A formula A is valid, if s A for all S.

» Written F A.

» A formula A is unsatisfiable, if =5 A for no S.

» If A is valid, then —A is unsatisfiable and vice versa.
» The notions extend to (multi)sets of formulas.



Validity, Unsatisfiability

» A formula A is valid, if s A for all S.

Written E A.

A formula A is unsatisfiable, if Es A for no S.

If A is valid, then —A is unsatisfiable and vice versa.
The notions extend to (multi)sets of formulas.

For {A,,...,A,}, just formulate them for A; A --- A A,.
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Validity, Unsatisfiability

» A formula A is valid, if s A for all S.

Written E A.

A formula A is unsatisfiable, if Es A for no S.

If A is valid, then —A is unsatisfiable and vice versa.
The notions extend to (multi)sets of formulas.

For {A,,...,A,}, just formulate them for A; A --- A A,.

vV v.v. v .Y
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Validity, Unsatisfiability

» A formula A is valid, if s A for all S.

Written E A.

A formula A is unsatisfiable, if Es A for no S.

If A is valid, then —A is unsatisfiable and vice versa.
The notions extend to (multi)sets of formulas.

For {A,,...,A,}, just formulate them for A; A --- A A,.

vV v.v. v .Y
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Validity, Unsatisfiability

» A formula A is valid, if s A for all S.

Written E A.

A formula A is unsatisfiable, if Es A for no S.

If A is valid, then —A is unsatisfiable and vice versa.
The notions extend to (multi)sets of formulas.

For {A,,...,A,}, just formulate them for A; A --- A A,.
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Validity, Unsatisfiability

» A formula A is valid, if s A for all S.

Written E A.

A formula A is unsatisfiable, if Es A for no S.

If A is valid, then —A is unsatisfiable and vice versa.
The notions extend to (multi)sets of formulas.

For {A,,...,A,}, just formulate them for A; A --- A A,.

vV v.v. v .Y

Non-valid

Valid sat

Unsat




Validity, Unsatisfiability

Non-valid

Valid sat

Unsat

> Vx.p(x) = Jy.p(y) is valid.
» p(a) = —3x.p(x) is satisfiable non-valid.
> Vx.p(x) A Jy.—p(y) is unsatisfiable.



Logical Consequence

Definition
A formula A is a logical consequence of the formulas By, ..., B,,
if every model of B; A --- A B, is a model of A.



Logical Consequence

Definition

A formula A is a logical consequence of the formulas By, . ..

if every model of By A - -- A B, is a model of A.
Example

» mortal(socrates) is a logical consequence of
Vx.(person(x) = mortal(x)) and person(socrates).

» cooked(apple) is a logical consequence of
Vx.(—cooked(x) = tasty(x)) and —tasty(apple).

» genius(einstein) is not a logical consequence of
dx.person(x) A genius(x) and person(einstein).



Logical Equivalence

Definition
Two formulas are logically equivalent if they are a logical
consequence of each other (i.e., they have exactly the same

models).



Normal Forms

Definition
A formula A is in a negation normal form (NNF) if
» A does not contain = and <, and

» if A contains a subformula —B, then B is an atomic formula.



Normal Forms

Definition
A formula A is in a negation normal form (NNF) if
» A does not contain = and <, and

» if A contains a subformula —B, then B is an atomic formula.

Example

(@) V 3x.~gq(x) is in NNF.

(a) V —3x.q(x) is not in NNF.

—p(a) vV —q(b) is in NNF.

—\(p( ) A q(b)) is not in NNF.
dx.(p(x) A =g(x)) is in NNF.

Jx.(p(x) = —¢g(x)) is not in NNF.

pla
pla

vV v vV v v Y



Normal Forms

Definition
A formula is in prenex normal form (PNF), if it has the form
01x1.02x2.- - Opxy.M, n > 0, where

» each Q; is either V or 3,
> x1,...x, are distinct variables,
» M (called the matrix) does not contain quantifiers.



Normal Forms

Definition
A formula is in prenex normal form (PNF), if it has the form
01x1.02x2.- - Opxy.M, n > 0, where

» each Q; is either V or 3,
> x1,...x, are distinct variables,
» M (called the matrix) does not contain quantifiers.

Example

> dx.(p(x) = —q(a)) is in PNF.

> p(a) V —3x.q(x) is not in PNF.

» —p(a) V —q(b) is in NNF.

> Vx.(=(p(x) A Jy.q(y))) is not in PNF.

> Vx.3y.Vz.(=(p(x,y) A gq(y,z))) is in PNF.

> Vx.—3y.Vz.(=(p(x,y) A q(y,z))) is not in PNF.



Normal Forms

Propositions:
» For each formula A there exists a formula B in NNF such
that A and B are logically equivalent.

» Such a B is called an NNF of A.
» An NNF of a formula is not unique.



Normal Forms

Propositions:
» For each formula A there exists a formula B in NNF such
that A and B are logically equivalent.
» Such a B is called an NNF of A.
» An NNF of a formula is not unique.
» For each formula A there exists a formula B in PNF such
that A and B are logically equivalent.

» Such a Bis called a PNF of A.
» A PNF of a formula is not unique.



Transformation into a Prenex Normal Form

|dea:
Define transformations

A~ B~ C,

where B is an NNF of A, and C is a PNF of B and of A.



Transformation into a Prenex Normal Form

First set of rules, to get an NNF of a formula.
Rules are applied exhaustively.

1. Eliminate of & and =

AsB ~ (A=B)AN(B=A)
A=B ~ -AVB

2. Eliminate double negation and push the negation inside:

—(-A) ~ A
-(AV B) -A A —B
—(AAB) -AV -B
—Vx.A dx.—-A
—dx.A Vx.—A

I A



Transformation into a Prenex Normal Form

Second set of rules, to get an PNF of a formula in NNF.
Rules in 4 are applied exhaustively.

3. Rename of all bound variables.
4. Move the quantifiers to the left of the entire formula:

OxA[x]ANB ~ Ox.
Ox.BVA[x] ~ Ox.
Ox.BANA[x] ~ Ox.(BANA[x

where B does not contain free occurrences of x.
(A[x] means that x occurs freely in A.)



Transformation into a Conjunctive Normal Form

» CNF: A formula of the form C; A --- A C,, Wwhere each C; is a
disjunction of literals: L} v - -- V L.

> If Qi1x1. - Oux,y-M is in prenex normal form, then M is in
NNF.

» M consists of disjunctions and conjunctions of literals.

» CNF is obtained from NNF by distributing disjunction over
conjunction:

AV(BAC) ~ (AVB)A(AVC)
(BAC)VA ~ (BVA)A(CVA)



Examples

Prove that
Vx.p(x) = ¢

is logically equivalent to
Ax.(p(x) = q)

by bringing them to PNF with the matrix in CNF:



Skolemization

Replace existentially quantified variables by Skolem functions:
» The formula Qix;.- - Oux,.M is in PNF and M is in CNF.

» Skolemization is performed by repeatedly applying the
following rule:

Vxi.oo - Vx,.3y.0121. - Qmzm.- Myl ~
Vxp.o V2. 0121 Oz MIf(x1, ..., x,)]

where f is a new function symbol of arity n with n > 0.
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Example

Vx.3y.(3z.(p(x,2) V p(y,2)) = Ju.q(x,y,u))
~ o Va3y(—3z.(p(x, 2) Vp(,2)) V Jug(x, y,u))
~ o Va3y. (Voo (p(x, 2) Vp(v,2) V Jug(x, y,u))



Example

Vx.Jy.(Jz.(p(x,2) V p(y,2)) = Ju.qx,y, u))
~ o Vx 3y (=3z.(p(x,2) V p(y,2)) V Fug(x, y, u))
~ o Vx3y. (Vo (p(x, 2) V p(y,2)) V Jug(x, y, u))
~ o Ve dy.(Vz.(-p(x, 2) A —p(y,2)) V Jug(x, y,u))



Example

L A

Vx.Jy.(Jz.(p(x,2) V p(y,2)) = Ju.qx,y, u))
Vx.3y.(=3z.(p(x,2) V p(y,2)) V Ju.q(x,y,u))
Vx.3y.(Vz.=(p(x,2) V p(y,2)) V Ju.q(x, y,u))
Vx.3y.(Vz.(=p(x,2) A =p(y,2)) V Ju.q(x, y,u))
Vx.3y.Vz.((=p(x,2) A =p(y,2)) V Ju.q(x, y,u))



Example

I A

Vx.3y.(3z.(p(x,2) V p(y,2)) = Ju.q(x,y,u))
Vx.3y.(=3z.(p(x,2) V p(y,2)) V Ju.q(x,y, u))
Vx.3y. (V2. (p(x,2) V p(v,2)) V Ju.q(x, y, u))

Vx.3y. (VZ (ﬁp(x Z) ﬁp(y Z)) \4 El”“](xvya l/t))
Vx.3yVz.((=p(x,2) A —p(y,2)) V Ju.q(x,y,u))
Vx.3y.Vz.3u.((=p(x,2) A =p(y,2)) V q(x,y,u))



Example

I A

Vx.3y.(3z.(p(x,2) V p(y,2)) = Ju.q(x,y,u))
Vx.3y.(=3z.(p(x,2) V p(y,2)) V Ju.q(x,y, u))
Vx.3y. (V2. (p(x,2) V p(v,2)) V Ju.q(x, y, u))

Vx.3y.(Vz.(=p(x,2) A =p(,2)) V Ju.q(x,y,u))

Vx.3yVz.((=p(x,2) A —p(y,2)) V Ju.q(x,y,u))

Vx.3y.Vz.3u. (x,2) A =p(y,2)) V q(x,y,u))
(=

((=p
Vx.3y.Vz.Ju.((-p(x,2) V q(x,y,u)) A

p(y,2) V q(x,y,u)))



Example

S T A A

Vx.3y.(3z.(p(x,2) V p(y,2)) = Ju.q(x,y,u))
Vx.3y.(=3z.(p(x,2) V p(y,2)) V Ju.q(x,y, u))
Vx.3y. (V2. (p(x,2) V p(v,2)) V Ju.q(x, y, u))

V. 3y.(Vz.(=p(x, 2) A =p(y,2)) V Juq(x, y,u))
Vx.3y.Vz.((=p(x,2) A =p(y,2)) V Ju.q(x,y,u))
Vx.3y.Vz.3u.((—p(x,2) A —p(y,2)) V q(x,y,u))
Vx.3y.Vz.3u.((=p(x,2) V q(x,y,u)) A (-
Vx.Vz.3u.((=p(x,2) V q(x, fi(x),u)) A
(-p(fi(x),2) V q(x.fi(x), u)))

p(y,2) V q(x,y,u)))



Example

S T A A

§

Vx.3y.(3z.(p(x,2) V p(y,2)) = Ju.q(x,y,u))
Vx.3y.(=3z.(p(x,2) V p(y,2)) V Ju.q(x,y, u))
Vx.3y. (V2. (p(x,2) V p(v,2)) V Ju.q(x, y, u))

Vx.3y.(Vz.(-p(x,2) A =p(y,2)) V Ju.q(x, y, u))
Vx.3y.Vz.((mp(x,2) A —p(y,2)) V Ju.q(x,y,u))
Vx.3y.Vz.Ju.((—p(x,2) A —p(y,2)) V q(x,y,u))
Vx.3y.Vz.Ju.((—p(x,2) V q(x,y,u)) A (-
Vx.Vz.3u.((=p(x,2) V q(x, fi(x),u)) A
(=p(fi(x),2) V q(x.fi(x),u)))
Va2 ((-p(x,2) V q(x, fi(x), fa(x, 2))) A
(=p(fi(x),2) V q(x.fi(x). fa(x,2))))

p(y,2) V q(x,y,u)))



Example

Vx.3y.(Fz.(p(x,2) V p(y,2)) = Ju.q(x,y,u))
~ o VaVz((—p(x,2) Vo g(x, fi(x), A (x,2))) A
(mp(fi(x),2) V qlx, fi(x),f2(x, 2))))-



A Property of Skolem Normal Form

Theorem
Let A be a formula and B be its Skolem normal form. Then A is
unsatisfiable iff B is unsatisfiable.
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A Property of Skolem Normal Form

Theorem
Let A be a formula and B be its Skolem normal form. Then A is
unsatisfiable iff B is unsatisfiable.

» A and B are, in general, not equivalent.

» Example:
» A =3xp(x), B=pla).
» S =({1,2},]).
> a; = 1.
> pr = {2}
» Then Vals(A) = true but Vals(B) = false.



