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Formula Clausification
A clause is a disjunction of literals.

Examples: ¬P[x ] ∨ Q[y , f [x ]], P[x ]

A set of clauses S is regarded as a conjunction of all clauses in S , where
every variable in S is considered governed by a universal quantifier.

Example: Let

∀
x
∃
y ,z

((¬P[x , y ] ∧ Q[x , z ]) ∨ R[x , y , z ])

The standard form of the formula above, that is

∀
x

((¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]]) ∧ (Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]))

can be represented by the following set of clauses

{¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]],Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F , then F is inconsistent iff S is inconsistent.
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Formulas Clausification (cont’d)

Example :
Transform the formulas F1, F2,F3,F4, and ¬G into a set of clauses, where

F1 : ∀
x,y
∃
z
P[x , y , z ]

F2 :

∀
x,y ,z,u,v ,w

(P[x , y , u] ∧ P[y , z , v ] ∧ P[u, z ,w ] ⇒ P[x , v ,w ])

∧
∀

x,y ,z,u,v ,w
(P[x , y , u] ∧ P[y , z , v ] ∧ P[x , v ,w ] ⇒ P[u, z ,w ])

F3 : ∀
x

P[x , e, x ] ∧ ∀
x

P[e, x , x ]

F4 : ∀
x

P[x , i [x ], e] ∧ ∀
x

P[i [x ], x , e]

G : ∀
x

P[x , x , e] ⇒ ∀
u,v ,w

(P[u, v ,w ] ⇒ P[v , u,w ])
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Substitution & Unification
Motivation: apply resolution principle to FOL formulas.
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C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]
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Substitution (cont’d)

A substitution σ is a finite set of the form {v1 → t1, ..., vn → tn} where
every ti is a term different from vi and no two elements in the set have
the same variable vi .

Let σ be defined as above and E be an expression. Then Eσ is an
expression obtained from E by replacing simultaneously each occurrence
of vi in E by the term ti

Example: Let σ = {x → z , z → h[a, y ]} and E = f (z , a, g [x ], y). Then
Eσ = f [h[a, y ], a, g [z ], y ].
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Substitution (cont’d)

Let

θ = {x1 → t1, ..., xn → tn}
λ = {y1 → u1, ..., yn → un}

Then the composition of θ and λ (θ ◦ λ) is obtained from the set

{x1 → t1λ, ..., xn → tnλ, y1 → u1, ..., yn → un}

by deleting any element xj → tjλ for which xj = tjλ and any element
yi → ui such that yi is among {x1, ..., xn}.



Substitution (cont’d)
Example 1:

θ = {x → f [y ], y → z}
λ = {x → a, y → b, z → y}

Then

θ ◦ λ = {x → f [b], y → y , x → a, y → b, z → y}
= {x → f [b], z → y}

Example 2:

θ1 = {x → a, y → f [z ], z → y}
θ2 = {x → b, y → z , z → g [x ]}

Then

θ1 ◦ θ2 = {x → a, y → f [g [x ]], z → z , x → b, y → z , z → g [x ]}
= {x → a, y → f [g [x ]]}
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Unification

A substitution θ is called a unifier for a set {E1, ...,Ek} iff
E1θ = ... = Ekθ. The set {E1, ...,Ek} is said to be unifiable iff there
exists an unifier for it.

A unifier σ for a set {E1, ...,Ek} of expressions is a most general unifier iff
for each unifier θ for the set there is a substitution λ such that θ = σ ◦ λ.

Example: The set {P[a, y ],P[x , f [b]]} is unifiable since
σ = {x → a, y → f [b]} is a unifier for the set.
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Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its
nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

I locating the first symbol (starting from the left) at which not all the
expressions in W have exactly the same symbol and then

I extracting from each expression in W the subexpression that begins
with the symbol occupying that position.

Example: The disagreement set of {P[a, x , f [g [y ]]],P[z , f [z ], f [u]]} is
{a, z}.
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Unification Algorithm (cont’d)

Unification Algorithm

1. k := 0, Wk := W , σk := ε

2. If Wk is singleton then stop; σk is mgu of W . Otherwise find the
disagreement set Dk of Wk .

3. If there exists vk , tk ∈ Dk s.t. vk is a variable which does not occur
in tk , go to 4. Otherwise, stop; W is not unifiable.

4. Let σk+1 = σk ◦ {vk → tk} and Wk+1 = Wk{vk → tk}.
5. k = k + 1 and go to 2.

Example: Find a most general unifier for

1. W = {P[a, x , f [g [y ]]], P[z , f [z ], f [u]]}
2. W = {Q[a], Q[b]}
3. W = {P[x ], P[f [x ]]}
4. W = {P[x ], Q[y ]}
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Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu σ, then Cσ is called a factor of C .

Example: Let C : P[x ] ∨ P[a] ∨ Q[f [x ]] ∨ Q[f [a]] be a clause. Then
the mgu is σ = {x → a} and Cσ : P[a] ∨ Q[f [a]] is a factor of C .

Binary Resolvent: Let L1 ∨ C1 and L2 ∨ C2 be two clauses with no
variables in common. If L1 and ¬L2 have a mgu σ, then the clause
C1σ ∨ C2σ is called a binary resolvent of L1 ∨ C1 and L2 ∨ C2.

Example:
L1∨C1 : P[x ]∨Q[x ]∨R[f [x ]], L2∨C2 : ¬P[a]∨R[x ] −→ ¬P[a]∨R[y ]

σ = {x → a} is a mgu of P[x ] and P[a].
Binary resolvent: Q[x ] ∨ R[y ].

Resolvent: A resolvent of C1 and C2 is any binary resolvent of:
C1 and C2, a factor of C1 and and a factor of C2,
C1 and a factor of C2, a factor of C1 and C2.
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Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: The Method
Resolution: (Robinson, 1965)

I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

How does resolution work?
Given: formulas F1, ..., Fn

Prove: G by resolution.

1. Bring F1, ..., Fn, ..., ¬G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C .

4. If the empty clause appears, stop: Contradiction found, G is proved.

5. If no step can be made and the empty clause is not found, then H
can not be proved.



Resolution Principle: Correctness & Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.

”=⇒” (Completeness)
...

”⇐=” (Correctness)

I Assume S is satisfiable and derive a contradiction.

I Since there exists a deduction from S , we have the resolvents
R1,...Rn obtained in this deduction.

I Since S is satisfiable there exists an interpretation satisfying each
clause in S .

I Any resolvent of any two clauses in S is also satisfied by I , since
these resolvents are logical consequences of the two clauses.

I Hence I satisfies R1,...Rn which is impossible since one of Ri is the
empty clause.
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Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C1 and C2, a resolvent C of C1 and C2 is a logical
consequence of C1 and C2.

Proof.

Let
C1 : L ∨ C ′1
C2 : ¬L ∨ C ′2

We have to prove that

L ∨ C ′1, ¬L ∨ C ′2 |= C ′1 ∨ C ′2

that is, for any interpretation I if 〈L ∨ C ′1〉I = 〈¬L ∨ C ′2〉I = T then
〈C ′1 ∨ C ′2〉I = T.

I Case 〈L〉I = T. Then 〈C ′2〉I = T. Hence 〈C ′1 ∨ C ′2〉I = T.
I Case 〈L〉I = F. Then 〈C ′1〉I = T. Hence 〈C ′1 ∨ C ′2〉I = T.
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〈C ′1 ∨ C ′2〉I = T.

I Case 〈L〉I = T. Then 〈C ′2〉I = T. Hence 〈C ′1 ∨ C ′2〉I = T.
I Case 〈L〉I = F. Then 〈C ′1〉I = T. Hence 〈C ′1 ∨ C ′2〉I = T.
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Resolution Principle for FOL. Examples

Example 0: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[a] ∨ R[x ]

Apply resolution.
Example 1: Prove by resolution the following

∀
x

F [x ] ∨ ∀
x

H[x ] 6≡ ∀
x

(F [x ] ∨ H[x ])

Example 2: Prove by resolution that G is a logical consequence of F1 and
F2 where

F1 : ∀
x

(C [x ] ⇒ (W [x ] ∧ R[x ]))

F2 : ∃
x

(C [x ] ∧ O[x ])

G : ∃
x

(O[x ] ∧ R[x ])
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Resolution Principle for FOL. Examples (cont’d)

Example 3: Prove by resolution that G is a logical consequence of F1 and
F2 where

F1 : ∃
x

(
P[x ] ∧ ∀

y
(D[y ] ⇒ L[x , y ])

)
F2 : ∀

x

(
P[x ] ⇒ ∀

y
(Q[y ] ⇒ ¬L[x , y ])

)
G : ∀

x
(D[x ] ⇒ ¬Q[x ])

Example 4: Prove by resolution that G is a logical consequence of F
where

F : ∀
x
∃
y

(S [x , y ] ∧ M[y ]) ⇒ ∃
y

(I [y ] ∧ E [x , y ])

G : ¬∃
x

I [x ] ⇒ ∀
x,y

(S [x , y ] ⇒ ¬M[y ])



Resolution Principle for FOL. Examples (cont’d)
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Resolution Principle for FOL. Examples (cont’d)

Example 5: Prove by resolution that G is a logical consequence of F1,F2,
and F3 where

F1 : ∀
x

(Q[x ] ⇒ ¬P[x ])

F2 : ∀
x

(
(R[x ] ∧ ¬Q[x ]) ⇒ ∃

y
(T [x , y ] ∧ S [y ])

)
F3 : ∃

x

(
P[x ] ∧ ∀

y
(T [x , y ] ⇒ P[y ]) ∧ R[x ]

)
G : ∃

x
(S [x ] ∧ P[x ])
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