Automated Reasoning
Lecture 4: First-Order Logic

The Resolution Method
Madalina Erascu Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

October 30 & November 6, 2013

A,
N

Outline

Formula Clausification

Substitution & Unification

Resolution Principle for FOL

Outline

Formula Clausification

Formula Clausification
A clause is a disjunction of literals.

Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]

Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.

Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.

Example: Let

" 1((ﬂp[x,y] A Qlx,z]) V R[x,y,z])

xy

The standard form of the formula above, that is

V(=P fIXIl vV RIx flx],glx]]) A (Q(xglx]) v Rlx, f[x],g[x]]))
can be represented by the following set of clauses

{=Plx flIx]I vV RIx, fx], g[x]], Q(x,g[x]) v RIx, f[x], g[x]]}

Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.

Example: Let

" 1((ﬂp[x,y] A Qlx,z]) V R[x,y,z])

xy

The standard form of the formula above, that is

V(=P fIXIl vV RIx flx],glx]]) A (Q(xglx]) v Rlx, f[x],g[x]]))
can be represented by the following set of clauses

{=Plx flIx]I vV RIx, fx], g[x]], Q(x,g[x]) v RIx, f[x], g[x]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F, then F is inconsistent iff S is inconsistent.

Formulas Clausification (cont’d)

Example :
Transform the formulas Fy, F»,F3,F4, and =G into a set of clauses, where

Fll

F2:

F3:

F4Z

vV 3P[x,y,z]

X,y z

v (P[x,y,u] A Ply,z,v] A Plu,z,w] = P[x,v,w])

X,y,Z,U,V,W
A\
v (P[x,y,ul A Ply,z,v] A P[x,v,w] = Plu,z,w])

X,y,zZ,u,v,w
VP[x,e,x] A VP[e, x, x]
VP[x, i[x], e] A VP[i[x], x, €]

VP[x,x,e] = V¥V (Plu,v,w] = Plv,u,w])
X u,v,w

Outline

Substitution & Unification

Substitution & Unification

Motivation: apply resolution principle to FOL formulas.

Substitution & Unification
Motivation: apply resolution principle to FOL formulas.

Example: Let
G P[x] V Q[x]
G =P[f[x]] V R[x]

Substitution & Unification
Motivation: apply resolution principle to FOL formulas.

Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[]

Let x — f[a] in G, x = ain G.

Substitution & Unification
Motivation: apply resolution principle to FOL formulas.
Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[]

Let x — f[a] in G, x = ain G.

We have
q P[f[a]] v Q[f[a]]
G =P[f[a]] V R[a]

Substitution & Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[]
Let x — f[a] in G, x = ain G.

We have
q P[f[a]] v Q[f[a]]
G =P[f[a]] V R[a]

C{ and Cj are ground instances.

Substitution & Unification
Motivation: apply resolution principle to FOL formulas.

Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[]

Let x — f[a] in G, x = ain G.

We have
q P[fla]] vV Q[flal]
G =P[f[a]] V R[a]
C{ and Cj are ground instances.
A resolvent of C{ and C} is

G Q[f[a]] v Rla]

Substitution & Unification
Motivation: apply resolution principle to FOL formulas.

Example: Let
G P[x] V Q[x]
G =P[f[x]] V R[x]

Let x — f[x] in C;. We have

Substitution & Unification
Motivation: apply resolution principle to FOL formulas.
Example: Let
G P[x] vV Q[x]
G =P[f[x]] V R[x]
Let x — f[x] in C;. We have

G PIFIXIV QIFIX

Cf is an instance of .

Substitution & Unification

Motivation: apply resolution principle to FOL formulas.

Example: Let
G P[x] V Q[x]
G —P[f[x]] V R[x]

Let x — f[x] in C;. We have

G PIFIXIV QIFIX

Cf is an instance of .

A resolvent of
G =P[f[x]] V R[]

G PIFIXIV QIFIX

Substitution & Unification

Motivation: apply resolution principle to FOL formulas.

Example: Let
G P[x] V Q[x]
G —P[f[x]] V R[x]

Let x — f[x] in C;. We have

G PIFIXIV QIFIX

Cf is an instance of .

A resolvent of
G =P[f[x]] V R[]

G PIFIXIV QIFIX

G QIf[x]] V R[x]

Substitution & Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

G P[x] vV Q[x]

G =P[f[x]] V R[x]
Let x — f[x] in C;. We have

G PIFIXIV QIFIX

Cf is an instance of .

A resolvent of

G =P[f[x]] V R[]
G PlfIx]] v Q[f[x]]
G QIf[x]] V R[x]

Cj is an instance of C5. G5 is the most general clause.

Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.

Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.

Let o be defined as above and E be an expression. Then Eo is an
expression obtained from E by replacing simultaneously each occurrence
of v; in E by the term t;

Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.

Let o be defined as above and E be an expression. Then Eo is an
expression obtained from E by replacing simultaneously each occurrence
of v; in E by the term t;

Example: Let 0 = {x — z,z — h[a,y]} and E = f(z, a,g[x],y). Then
Eo = f[hla,y], 2. g[2], y].

Substitution (cont’d)

Let

0= {Xl — 1, .. Xp — t,,}
A={y1 = U1, ... Yo — Un}

Then the composition of § and A (6 o A) is obtained from the set
{x1 = B, oy Xp = ta\ Y1 = U1, ey Yo —> Un}

by deleting any element x; — t;A for which x; = t;A and any element
¥i — u; such that y; is among {xi, ..., x»}.

Substitution (cont’d)
Example 1:

0=1{x—flyly =z}
A={x—ay—bz—y}

Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then

Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}

Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then
Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}
Example 2:

bp={x—=ay—flz],z—=y}
O ={x—=> by —z,z— g[x]}

Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then
Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}
Example 2:

bp={x—=ay—flz],z—=y}
O ={x—=> by —z,z— g[x]}

Then
f100, ={x — a,y = flg[x]l,z = z,x = b,y = z,z — g[x]}
={x—=ay— flg[x]]}

Unification

A substitution 6 is called a unifier for a set {Ey, ..., Ex} iff
Ei6 = ... = Ex0. The set {Ey, ..., Ex} is said to be unifiable iff there
exists an unifier for it.

Unification

A substitution 6 is called a unifier for a set {Ey, ..., Ex} iff

Ei6 = ... = Ex0. The set {Ey, ..., Ex} is said to be unifiable iff there
exists an unifier for it.

A unifier o for a set {Ey, ..., Ex} of expressions is a most general unifier iff
for each unifier 6 for the set there is a substitution A such that § = g o \.

Unification

A substitution 6 is called a unifier for a set {Ey, ..., Ex} iff
Ei6 = ... = Ex0. The set {Ey, ..., Ex} is said to be unifiable iff there
exists an unifier for it.

A unifier o for a set {Ey, ..., Ex} of expressions is a most general unifier iff
for each unifier 8 for the set there is a substitution A such that § = oo A
Example: The set {P]a, y], P[x, f[b]]} is unifiable since

o ={x— a,y — f[b]} is a unifier for the set.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its
nonexistence, for a finite set of nonempty expressions.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its
nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its
nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

> locating the first symbol (starting from the left) at which not all the
expressions in W have exactly the same symbol and then

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its
nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by
> locating the first symbol (starting from the left) at which not all the
expressions in W have exactly the same symbol and then
> extracting from each expression in W the subexpression that begins
with the symbol occupying that position.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its
nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

> locating the first symbol (starting from the left) at which not all the
expressions in W have exactly the same symbol and then

> extracting from each expression in W the subexpression that begins
with the symbol occupying that position.

Exan}ple: The disagreement set of {Pa, x, f[g[y]]], Plz, f[z], f[u]]} is

Unification Algorithm (cont’d)

Unification Algorithm

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢

2. If Wk is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢
2. If Wk is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢
2. If Wk is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4, Let Ok4+1 = Ok O {Vk — tk} and Wk+1 = Wk{vk — tk}.

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢
2. If Wk is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4. Let o441 =0k o0 {Vk — tk} and Wy, = Wk{vk — tk}.
5. k=k+1 and go to 2.

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢
2. If Wk is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4. Let o441 =0k o0 {Vk — tk} and Wy, = Wk{vk — tk}.
5. k=k+1 and go to 2.

Example: Find a most general unifier for

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢
2. If W is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4. Let o441 =0k o0 {Vk — tk} and Wy, = Wk{vk — tk}.
5. k=k+1 and go to 2.

Example: Find a most general unifier for
L. W= {Pla,x,flglylll, Plz,flz], flu]]}

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢

2. If W is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4. Let o441 =0k o0 {Vk — tk} and Wy, = Wk{vk — tk}.
5. k=k+1 and go to 2.

Example: Find a most general unifier for
1. w= {P[37X7 f[g[)/]]L P[Z’ f[z], f[u]]}
2. W={Qla], Q[b]}

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢

2. If W is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4. Let o1 = ok o {vk — te} and Wiy = Wi{vk — t}.
5. k=k+1 and go to 2.
Example: Find a most general unifier for
1. W = {Pla,x, flgly]ll, Plzflz], flu]]}
2. W={Q[a], Q[b]}
3. W ={P[x], P[f[x]]}

Unification Algorithm (cont’d)

Unification Algorithm
1. k=0, Wy =W, oy :=¢
2. If W is singleton then stop; o is mgu of W. Otherwise find the
disagreement set Dy of W.

3. If there exists vk, tx € Dy s.t. vk is a variable which does not occur
in tx, go to 4. Otherwise, stop; W is not unifiable.

4, Let Ok41 = Ok © {Vk — tk} and Wk+1 = Wk{vk — tk}.
5. k=k+1 and go to 2.
Example: Find a most general unifier for
1. w= {P[37X7 f[g[)/]]L P[Z’ f[z], f[u]]}
2. W={Qla], Q[b]}
3. W={Plx], PIfIx]]}
4. W ={P[x], QlyI}

Outline

Resolution Principle for FOL

Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu o, then Co is called a factor of C.

Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu o, then Co is called a factor of C.

Example: Let C: P[x] V P[a] V Q[f[x]] V Q[f[a]] be a clause. Then
the mgu is 0 = {x — a} and Co: P[a] Vv Q[f[a]] is a factor of C.

Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu o, then Co is called a factor of C.

Example: Let C: P[x] V P[a] V Q[f[x]] V Q[f[a]] be a clause. Then
the mgu is 0 = {x — a} and Co: P[a] Vv Q[f[a]] is a factor of C.

Binary Resolvent: Let L; V C; and L, V G be two clauses with no
variables in common. If Ly and =L, have a mgu o, then the clause
CGo V Go is called a binary resolvent of L; V C; and Ly V G.

Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu o, then Co is called a factor of C.

Example: Let C: P[x] V P[a] V Q[f[x]] V Q[f[a]] be a clause. Then
the mgu is 0 = {x — a} and Co: P[a] Vv Q[f[a]] is a factor of C.

Binary Resolvent: Let L; V C; and L, V G be two clauses with no
variables in common. If Ly and =L, have a mgu o, then the clause
CGo V Go is called a binary resolvent of L; V C; and Ly V G.

Example:
L1\/CF1): Plx]VQ[x]VR[f[x]], LavG : —P[a]VR[x] — —P[a]VR[y]

Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu o, then Co is called a factor of C.

Example: Let C: P[x] V P[a] V Q[f[x]] V Q[f[a]] be a clause. Then
the mgu is 0 = {x — a} and Co: P[a] Vv Q[f[a]] is a factor of C.

Binary Resolvent: Let L; V C; and L, V G be two clauses with no
variables in common. If Ly and =L, have a mgu o, then the clause
CGo V Go is called a binary resolvent of L; V C; and Ly V G.

Example:

LivG : PIX]VQ[x]VR[f[x]], LavG: —Pla]VR[x] — —P[a]VR[y]
o ={x — a} is a mgu of P[x] and P[a].

Binary resolvent: Q[x] V R[y].

Resolution Principle: The Inference Rule

Factor: If two or more literals (with the same sign) of a clause C have a
mgu o, then Co is called a factor of C.

Example: Let C: P[x] V P[a] V Q[f[x]] V Q[f[a]] be a clause. Then
the mgu is 0 = {x — a} and Co: P[a] Vv Q[f[a]] is a factor of C.

Binary Resolvent: Let L; V C; and L, V G be two clauses with no
variables in common. If Ly and =L, have a mgu o, then the clause
CGo V Go is called a binary resolvent of L; V C; and Ly V G.

Example:

LivG : PIX]VQ[x]VR[f[x]], LavG: —Pla]VR[x] — —P[a]VR[y]
o ={x — a} is a mgu of P[x] and P[a].

Binary resolvent: Q[x] V R[y].

Resolvent: A resolvent of C; and G, is any binary resolvent of:
Gy and G, a factor of C; and and a factor of G,
(1 and a factor of G, a factor of C; and G,.

Resolution Principle: The Method
Resolution: (Robinson, 1965)

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses

> is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses
> is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses
> is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses
> is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses
> is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

How does resolution work?
Given: formulas Fq, ..., F,
Prove: G by resolution.

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses
> is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses
> is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

How does resolution work?
Given: formulas Fq, ..., F,
Prove: G by resolution.

1. Bring Fy, ..., F,, ..., =G into standard form and write the clauses
which are obtained

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses
> is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses
> is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

How does resolution work?
Given: formulas Fq, ..., F,
Prove: G by resolution.

1. Bring Fy, ..., F,, ..., =G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

Resolution Principle: The Method
Resolution: (Robinson, 1965)
> is an inference rule which generates resolvents from a set of clauses
> is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses
> is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

How does resolution work?
Given: formulas Fq, ..., F,
Prove: G by resolution.

1. Bring Fy, ..., F,, ..., =G into standard form and write the clauses
which are obtained

2. Start derivation and try to obtain the empty clause from the set C
of clauses.

3. In the derivation use resolution inference rule and factoring rules to
derive new clauses; these new clauses are added to C.

Resolution Principle: The Method
Resolution: (Robinson, 1965)

>
| 4

is an inference rule which generates resolvents from a set of clauses
is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses

is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

How does resolution work?
Given: formulas Fq, ..., F,
Prove: G by resolution.

1.

Bring Fy, ..., F,, ..., =G into standard form and write the clauses
which are obtained

Start derivation and try to obtain the empty clause from the set C
of clauses.

. In the derivation use resolution inference rule and factoring rules to

derive new clauses; these new clauses are added to C.

. If the empty clause appears, stop: Contradiction found, G is proved.

Resolution Principle: The Method
Resolution: (Robinson, 1965)

>
| 4

is an inference rule which generates resolvents from a set of clauses
is a refutation proof procedure: empty clause is tried to be derived
from a set of clauses

is refutationally complete: a set of clauses is unsatisfiable iff the
empty clause can be derived

How does resolution work?
Given: formulas Fq, ..., F,
Prove: G by resolution.

1.

Bring Fy, ..., F,, ..., =G into standard form and write the clauses
which are obtained

Start derivation and try to obtain the empty clause from the set C
of clauses.

. In the derivation use resolution inference rule and factoring rules to

derive new clauses; these new clauses are added to C.
If the empty clause appears, stop: Contradiction found, G is proved.

. If no step can be made and the empty clause is not found, then H

can not be proved.

Resolution Principle: Correctness & Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Resolution Principle: Correctness & Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.

Resolution Principle: Correctness & Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

«=" (Correctness)

Resolution Principle: Correctness & Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

«=" (Correctness)

Resolution Principle: Correctness & Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

«=" (Correctness)

» Assume S is satisfiable and derive a contradiction.

Resolution Principle: Correctness & Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

«=" (Correctness)

» Assume S is satisfiable and derive a contradiction.

» Since there exists a deduction from S, we have the resolvents
Ri,...R, obtained in this deduction.

Resolution Principle: Correctness & Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

«=" (Correctness)

» Assume S is satisfiable and derive a contradiction.

» Since there exists a deduction from S, we have the resolvents
Ri,...R, obtained in this deduction.

» Since S is satisfiable there exists an interpretation satisfying each
clause in S.

Resolution Principle: Correctness & Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

>

>

«=" (Correctness)

Assume S is satisfiable and derive a contradiction.

Since there exists a deduction from S, we have the resolvents
Ri,...R, obtained in this deduction.

Since S is satisfiable there exists an interpretation satisfying each
clause in S.

Any resolvent of any two clauses in S is also satisfied by /, since
these resolvents are logical consequences of the two clauses.

Resolution Principle: Correctness & Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty
clause from S.

Proof.
"=" (Completeness)

«=" (Correctness)

» Assume S is satisfiable and derive a contradiction.

» Since there exists a deduction from S, we have the resolvents
Ri,...R, obtained in this deduction.

» Since S is satisfiable there exists an interpretation satisfying each
clause in S.

» Any resolvent of any two clauses in S is also satisfied by /, since
these resolvents are logical consequences of the two clauses.

» Hence / satisfies Ry,...R, which is impossible since one of R; is the
empty clause.

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Proof.

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Proof.

Let
C: LV Cll
C2 : LV C2I

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Proof.
Let
C: LV Cll
C2 : AL Vv C2I
We have to prove that

LV, ~LvVCG E VG

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Proof.
Let

C: LV Cll
C2 : AL Vv C2I
We have to prove that
LV, ~LvVCG E VG

that is, for any interpretation / if (LV (i), = (=L V C}), =T then
(V) =T.

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Proof.

Let
C: LV Cll

C2 : LV C2I
We have to prove that
LV, ~LvVCG E VG
that is, for any interpretation / if (LV (i), = (=L V C}), =T then

(V) =T.
» Case (L), =T. Then (C;), = T. Hence (C{ vV G3), = T.

Resolution Principle: Correctness for Propositions

Lemma
Given two clauses C; and G, a resolvent C of C; and G, is a logical
consequence of C; and G,.

Proof.

Let
C: LV Cll

C2 : LV C2I
We have to prove that
LV, ~LvVCG E VG
that is, for any interpretation / if (LV (i), = (=L V C}), =T then
(Glv G, =T.

» Case (L), = T. Then ((}), = T. Hence (C{ Vv C}), =T.
» Case (L), = F. Then (C{), = T. Hence (C{ V (}), = T.

Resolution Principle for FOL. Examples

Example 0: Let
G P[x] vV Q[x]
G —Pla] V R[x]

Apply resolution.

Resolution Principle for FOL. Examples

Example 0: Let
G P[x] vV Q[x]
G —Pla] V R[x]
Apply resolution.
Example 1: Prove by resolution the following

VEI] v YHI] # Y(FIX] V)

Resolution Principle for FOL. Examples

Example 0: Let
G P[x] vV Q[x]
G —Pla] V R[x]
Apply resolution.
Example 1: Prove by resolution the following

VEI] v YHI] # Y(FIX] V)

Example 2: Prove by resolution that G is a logical consequence of F; and
F> where

F:oV(CK = (Wi A RIX))
F: é(C[X] A O[x])
G: ?(O[x] A R[x])

Resolution Principle for FOL. Examples (cont’d)

Example 3: Prove by resolution that G is a logical consequence of F; and
F> where

Fi 3P A YOV = L))

Foo Y(PI = Y@ = k)
6 YDl = ~Qkx)

Resolution Principle for FOL. Examples (cont’d)

Example 3: Prove by resolution that G is a logical consequence of F; and
F> where

Fli

x L

P A Y (0] = L)
F ¥ (PR = Y@M = L)
G V(b = ~Qlx)

Example 4: Prove by resolution that G is a logical consequence of F
where

Foo 38yl A M) = 30D] A Elxyl)
G: —JIx = ¥ (Sky] = -M])

Resolution Principle for FOL. Examples (cont’d)

Example 5: Prove by resolution that G is a logical consequence of Fy, Fp,
and F3 where

Fi: Y(Q[X] = =P[x])

Foo Y (R0 A 20D = 3(Thd A SDD)
Foo 3P A Y (Tl = P A R

G: 3(SPdAPlx)

	Formula Clausification
	Substitution & Unification
	Resolution Principle for FOL

