Automated Reasoning - WS 2013 Lecture 4: Examples

Mădălina Eraşcu and Tudor Jebelean Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria {merascu,tjebelea}@risc.jku.at

October 30 & November 6, 2013

Example 1 (Clausification) Transform the formulae F_1 , F_2 , F_3 , F_4 , and $\neg G$ into a set of clauses, where

Solution. F_1 , F_2 , F_3 , F_4 can almost immediately transformed into clauses. We have

$$\begin{split} &P[x,y,f[x,y]] \\ &\neg P[x,y,u] \ \lor \ \neg P[y,z,v] \ \lor \ \neg P[u,z,w] \ \lor \ P[x,v,w] \\ &\neg P[x,y,u] \ \lor \ \neg P[y,z,v] \ \lor \ \neg P[x,v,w] \ \lor \ P[u,z,w] \\ &P[x,e,x] \\ &P[e,x,x] \\ &P[x,i[x],e] \\ &P[i[x],x,e] \end{split}$$

We transform $\neg G$ into standard form

$$\begin{split} \neg \left(\left(\bigvee_x P[x,x,e] \right) & \Rightarrow \left(\bigvee_{u,v,w} \left(P[u,v,w] \Rightarrow P[v,u,w] \right) \right) \right) \\ \iff \neg \left(\neg \left(\bigvee_x P[x,x,e] \right) \lor \left(\bigvee_{u,v,w} \left(\neg P[u,v,w] \lor P[v,u,w] \right) \right) \right) \\ \iff \left(\bigvee_x P[x,x,e] \right) \land \left(\underset{u,v,w}{\exists} \left(P[u,v,w] \land \neg P[v,u,w] \right) \right) \\ \rightsquigarrow \forall_x P[x,x,e] \land P[a,b,c] \land \neg P[b,a,c] \end{split}$$

which gives the following clauses

$$P[x, x, e]$$

$$P[a, b, c]$$

$$\neg P[b, a, c]$$

Example 2 (Most General Unifier) Find a most general unifier for

$$W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$$

Solution. Let $\sigma_0 = \varepsilon$ and $W_0 = W$. Since W_0 is not a singleton, σ_0 is not a mgu of W.

 $D_0 = \{a, z\}.$

Let $\sigma_1 = \varepsilon \circ \{z \to a\}, W_1 = W_0 \sigma_1 = \{P[a, x, f[g[y]]], P[a, f[a], f[u]]\}.$

 W_1 is not a singleton. $D_1 = \{x, f[a]\}.$

Let $\sigma_2 = \{z \to a\}\{x \to f[a]\} = \{z \to a, x \to f[a]\}.$ $W_2 = W_1\sigma_2 = \{P[a, f[a], f[g[y]]], P[a, f[a], f[u]]\}.$

 W_2 is not a singleton. $D_2 = \{g[y], u\}.$

Let $\sigma_3 = \sigma_2\{u \to g[y]\} = \{z \to a, x \to f[a], u \to g[y]\}.$ $W_3 = W_2\sigma_2 = \{P[a, f[a], f[g[y]]], P[a, f[a], f[g[y]]]\} = \{P[a, f[a], f[g[y]]]\}.$ Since W_3 is a singleton. $\sigma_3 = \{z \to a, x \to f[a], u \to g[y]\}$ is a mgu for W.

Example 3 (Most General Unifier) Find a most general unifier for

$$W = \{Q[a], Q[b]\}$$

Solution. Let $\sigma_0 = \varepsilon$ and $W_0 = W$. Since W_0 is not a singleton, σ_0 is not a

 $D_0 = \{a, b\}$. Since none of the elements of D_0 is a variable we conclude that W is not unifiable.

Example 4 (Resolution 1) Prove by resolution the following

$$\forall F[x] \lor \forall H[x] \not\equiv \forall (F[x] \lor H[x])$$

Solution. Direction " \Rightarrow ". Let

$$F : \iff \ \ \, \forall F[x] \ \lor \ \forall H[x]$$

$$G : \iff \ \ \, \forall (F[x] \ \lor \ H[x])$$

We prove that G is a logical consequence of F by resolution. We have

$$F : \iff \ \, \forall F[x] \ \, \vee \ \, \forall H[x] \\ \iff \ \, \forall F[x] \ \, \vee \ \, H[y] \\ \neg G : \iff \ \, \neg \left(\forall (F[x] \ \, \vee \ \, H[x]) \right) \\ \iff \ \, \exists_x (\neg F[x] \ \, \wedge \ \, \neg H[x]) \\ \iff \ \, \neg F[a] \ \, \wedge \ \, \neg H[a]$$

By transforming them into a set of clauses we have

$$\begin{array}{ll} (1) & F[x] \lor H[y] \\ (2) & \neg F[a] \\ (3) & \neg H[a] \end{array}$$

(2)
$$\neg F[a]$$

$$(3) \quad \neg H[a]$$

By applying resolution we obtain the following clauses

(4)
$$H[a]$$
 (1) \land (2), $\{x \to a, y \to a\}$

(5) Ø $(3) \wedge (4)$

Direction "⇐". Let

$$G :\iff \ \, \forall F[x] \ \lor \ \forall H[x]$$

We prove that G is a logical consequence of F by resolution. We have

By transforming them into a set of clauses we have

$$\begin{array}{ll} (1) & F[x] \vee H[x] \\ (2) & \neg F[a] \\ (3) & \neg H[b] \end{array}$$

$$(2) \neg F[a]$$

$$(3) \quad \neg H[b]$$

By applying resolution we obtain the following clauses

(4)
$$H[a]$$
 (1) \land (2), $\{x \to a\}$

$$\begin{array}{ll} (4) & H[a] & (1) \wedge (2), \{x \to a\} \\ (5) & F[b] & (1) \wedge (3), \{x \to b\} \end{array}$$

Example 5 (Resolution 2) Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_1: \quad \forall \left(C[x] \Rightarrow \left(W[x] \land R[x]\right)\right)$$

$$F_2: \quad \exists \left(C[x] \land O[x]\right)$$

$$G: \quad \exists \left(O[x] \land R[x]\right)$$

Solution. We show that $F_1 \wedge F_2 \wedge \neg G$ is unsatisfiable by resolution. We transform $F_1, F_2, \neg G$ into Skolem standard form. We have

$$\iff \begin{picture}(-C[x] \lor W[x]) \land (\neg C[x] \lor R[x])\end{picture}$$

$$F_2: \exists_x (C[x] \land O[x])$$

$$\leadsto C[a] \land O[a]$$

$$\neg G: \neg \left(\exists (O[x] \land R[x]) \right)$$

$$\iff \ \ \forall (\neg O[x] \lor \neg R[x])$$

We have the following set of clauses

$$\begin{array}{lll} (1) & \neg C[x] \lor W[x] \\ (2) & \neg C[x] \lor R[x] \\ (3) & C[a] \\ (4) & O[a] \\ (5) & \neg O[x] \lor \neg R[x] \\ \end{array}$$

(2)
$$\neg C[x] \lor R[x]$$

$$(3)$$
 $C[a]$

$$(4)$$
 $O[a]$

$$(5) \quad \neg O[x] \lor \neg R[x]$$

By resolution we obtain also the following clauses

$$\begin{array}{ll} (6) & \neg R[a] & (4) \wedge (5), \{x \to a\} \\ (7) & \neg C[a] & (6) \wedge (2), \{x \to a\} \\ (8) & \emptyset & (7) \wedge (3) \\ \end{array}$$

(7)
$$\neg C|a|$$
 (6) \land (2), $\{x \rightarrow a\}$

(8)
$$\emptyset$$
 (7) \wedge (3)

Example 6 (Resolution 3) Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \exists \left(P[x] \land \forall D[y] \Rightarrow L[x,y]\right)$$

$$F_{2}: \quad \forall \left(P[x] \Rightarrow \forall D[y] \Rightarrow \neg L[x,y]\right)$$

$$G: \quad \forall D[x] \Rightarrow \neg D[x]$$

Solution. We show that $F_1 \wedge F_2 \wedge \neg G$ is unsatisfiable by resolution. We transform $F_1, F_2, \neg G$ into Skolem standard form. We have

$$F_{1}: \exists_{x} \left(P[x] \land \forall_{y} (D[y] \Rightarrow L[x,y])\right)$$

$$\iff \exists_{x} \left(P[x] \land \forall_{y} (\neg D[y] \lor L[x,y])\right)$$

$$\iff \exists_{x} \forall_{y} (P[x] \land (\neg D[y] \lor L[x,y]))$$

$$\iff \forall_{y} (P[a] \land (\neg D[y] \lor L[a,y]))$$

$$F_{2}: \quad \forall \left(P[x] \Rightarrow \forall \left(Q[y] \Rightarrow \neg L[x,y]\right)\right)$$

$$\iff \quad \forall \left(P[x] \Rightarrow \forall \left(\neg Q[y] \lor \neg L[x,y]\right)\right)$$

$$\iff \quad \forall \left(\neg P[x] \lor \forall \left(\neg Q[y] \lor \neg L[x,y]\right)\right)$$

$$\iff \quad \forall \forall \left(\neg P[x] \lor \neg Q[y] \lor \neg L[x,y]\right)$$

$$\neg G: \neg \left(\forall (D[x] \Rightarrow \neg Q[x]) \right)$$

$$\iff \neg \left(\forall (\neg D[x] \lor \neg Q[x]) \right)$$

$$\iff \exists (D[x] \land Q[x])$$

$$\rightsquigarrow D[a] \land Q[a]$$

We have the following set of clauses

- $\begin{array}{cccc} (2) & \neg D[y] & \lor & L[a,y] \\ (3) & \neg P[x] & \lor & \neg Q[y] & \lor & \neg L[x,y] \\ (4) & D[a] & & & & & & & & & \\ \end{array}$

By resolution we obtain also the following clauses

$$\begin{array}{lll} (6) & L[a,a] & (2) \wedge (4), \{y \to a\} \\ (7) & \neg P[a] \vee \neg Q[a] & (3) \wedge (6), \{x \to a, y \to a\} \\ (8) & \neg Q[a] & (1) \wedge (7) \\ (9) & \emptyset & (5) \wedge (8) \end{array}$$

Example 7 (Resolution 4) Prove by resolution that G is a logical consequence of F where

$$\begin{array}{lll} F: & \forall \exists \left(S[x,y] \ \land \ M[y]\right) \ \Rightarrow \ \exists \left(I[y] \ \land \ E[x,y]\right) \\ G: & \neg \exists I[x] \ \Rightarrow \ \forall \limits_{x,y} \left(S[x,y] \Rightarrow \neg M[y]\right) \end{array}$$

Solution. We show that $F \wedge \neg G$ is unsatisfiable. First we transform the formulae into standard form. We have

We have the following set of clauses

$$(1) \quad \neg S[x,y] \lor \neg M[y] \lor I[f[x]]$$

$$\begin{array}{llll} (1) & \neg S[x,y] \ \lor \ \neg M[y] \ \lor \ I[f[x]] \\ (2) & \neg S[x,y] \ \lor \ \neg M[y] \ \lor \ E[x,f[x]] \end{array}$$

- (3) $\neg I[z]$
- (4) S[a,b]
- (5) M[b]

By resolution we obtain also the following clauses

$$\begin{array}{lll} (6) & \neg S[x,y] \ \lor \ \neg M[y] & (1) \land (3), \{z \to f[x]\} \\ (7) & \neg M[b] & (4) \land (6), \{x \to a, y \to b\} \\ (8) & \emptyset & (5) \land (7) \end{array}$$

$$(1) \land (3), \{z \to f[x]\}$$

$$(7)$$
 $\neg M[b]$

$$(4) \land (6), \{x \rightarrow a, y \rightarrow b\}$$

$$(5) \wedge (7)$$

Example 8 (Resolution 5) Prove by resolution that G is a logical consequence of F_1, F_2 , and F_3 where

$$F_1: \forall (Q[x] \Rightarrow \neg P[x])$$

$$F_{1}: \quad \forall (Q[x] \Rightarrow \neg P[x])$$

$$F_{2}: \quad \forall \left((R[x] \land \neg Q[x]) \Rightarrow \exists (T[x, y] \land S[y]) \right)$$

$$F_{3}: \quad \exists \left(P[x] \land \forall (T[x, y] \Rightarrow P[y]) \land R[x] \right)$$

$$G: \quad \exists (S[x] \land P[x])$$

$$F_3: \quad \exists_x \left(P[x] \land \forall_y (T[x,y] \Rightarrow P[y]) \land R[x] \right)$$

$$G: \quad \exists_x (S[x] \land P[x])$$

Solution. We show that $F_1 \wedge F_2 \wedge F_3 \wedge \neg G$ is unsatisfiable. First we transform the formulae into standard form.

From the normal forms we obtain the clauses (1) to (7), and then by resolution we obtain the clauses (8) to (15):