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Motivation

» Unrestricted use of the paramodulation rule can be very
inefficient.

» Various methods have been proposed to restrict it without
compromising the completeness.

» Term rewriting contributed essential techniques for refining
paramodulation into a practical inference system.



Rewriting-Based Deduction for Unit Equalities

» We assume that the given set of clauses consists of unit
equalities and one ground inequality.

» Goal: Design a calculus which works on such sets, restricts
applications of the paramodulation rule, and is complete.

» Later this calculus can be extended to general clauses.



Equational Theory

» E: A set of equations.
» A: The set of equality axioms for E.

» FEsw~tiff I =Esw~tfor all interpretations I which is a model
of EUA.

» Equational theory of E:
wpi={(s,t) [ EFsnt)

» Notation: sw~p t iff (s,t) € ~p.



Basic Concepts in Term Rewriting

» A rewrite rule is an ordered pair of terms, written [ — r.

» Term rewriting system (TRS): a set of rewrite rules.



Problem

Given: A set of equations F and two terms s and t.

Decide: s ~g t holds or not.
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Problem

Given: A set of equations F and two terms s and t.

Decide: s ~g t holds or not.

The problem is undecidable for an arbitrary F.

When E is finite and induces a (ground) convergent TRS,
the problem is decidable.

What's this?
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Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s =g t holds or not.

Solving Idea:

>

Refute and skolemize the goal, obtaining the ground
disequation s’ #p t'.

Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

In the course of completion, from time to time check whether
s and t' can be rewritten to the same term with the
equations and rules constructed so far.

If yes, stop. You obtained a contradiction, which proves
s~pt.

If not, continue with completion. If this is not possible, then
report: s ~p t does not hold. ZN,



What We Need To Know

» What is rewriting?

» What is a ground convergent set of equations and rewrite
rules?

» What is completion?



Basic Concepts in Term Rewriting

R: A term rewriting system.

» The rewrite relation induced by R, denoted — g, is a binary
relation on terms defined as:
s —>ptiff
there exist [ - r € R, a position p in s, a substitution o

such that s|, = lo and t = s[rc],.

s t




Basic Concepts in Term Rewriting

R: A term rewriting system.

» The rewrite relation induced by R, denoted — g, is a binary
relation on terms defined as:
s —>ptiff
there exist [ - r € R, a position p in s, a substitution o

such that s|, = lo and t = s[rc],.

s t

» Obviously R € —p.

» We may omit R when it is obvious from the context. (78N



Basic Concepts in Term Rewriting

» s rewrites to t by R iff s > t.

» < p stands for the inverse and -7, for reflexive-transitive
closure of —g.

» s is irreducible by R iff there is no ¢ such that s »p t.
» tis a normal form of s by R iff s =% ¢ and t is irreducible
by R.

» R is terminating iff > is well-founded, i.e., there is no
infinite sequence of rewrite steps s1 >R S2 >R S3 2R '



Basic Concepts in Term Rewriting

» R is confluent iff for all terms s,t1,to, if
S —>E tl and s —>}% tQ,
then there exists a term r such that

tl —>}%T and tQ —>}:3 T.



Basic Concepts in Term Rewriting

» R is confluent iff for all terms s,t1,to, if
s—>pti and s -} to,
then there exists a term 7 such that
t1 >R r and ty —>p .

Graphically:

VA
\¥
~
s
%

~
N
|
|
|
|
|
|
M
S -



Basic Concepts in Term Rewriting

» t1 and t9 are joinable by R if there exists a term r such that
t1 >R r and ty —>p T

» Notation: t1 |R to.



Basic Concepts in Term Rewriting

Example 1
Let + be a binary (infix) function symbol, s a unary function
symbol, 0 a constant.

R={0+z->z, s(x)+y—>s(z+y)}.

Then:
> 5(0) +5(5(0)) »r s(0+5(s(0))) ~r s(s5(s(0)))-
> 5(0) +5(s(0)) =% s(s(s(0))).
» s(s(s(0))) is irreducible by R and, hence, is a normal form of
s(0) + s(s(0)), of s(0+s(s(0))), and of s(s(s(0))).



Basic Concepts in Term Rewriting

» A TRS R is convergent iff it is confluent and terminating.

» A convergent TRS provides a decision procedure for the
underlying equational theory: Two terms are equivalent iff
they reduce to the same normal form.

» Computation of normal forms by repeated reduction is a don't
care non-deterministic process for convergent TRSs.



Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is
1. monotonic: If s> ¢, then r[s] > r[t] for all terms s,¢,7;
2. stable: If s >t, then so > to for all terms s,t and a

substitution o;

3. well-founded.
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Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is
1. monotonic: If s> ¢, then r[s] > r[t] for all terms s,¢,7;

2. stable: If s >t, then so > to for all terms s,t and a
substitution o;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies | >r for alll - r e R.
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Example 2

» |t|: The size of the term ¢.
» The order >1: s>1 ¢ iff |s| > [t].
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Reduction Orders

Example 2

» |t|: The size of the term ¢.
» The order >1: s >1 ¢ iff |s| > |¢].
» >1 is monotonic and well-founded.

» However, >1 is not a reduction order because it is not stable:
|f(f(z,2), ) =5>3=f(y,y)|
Foro={yw~ f(z,z)}:

o (FCf (@ 2),9) =1 (f (2, ), f (2, 2))| = 7,
lo(FCy, )l = 1 (f (s ), f )] = 7.



Reduction Orders

Example 2 (Cont.)

> |t|: The number of occurrences of x in t.

» The order >9: s >9 t iff |s| > |t| and |s|; > |¢|, for all x.



Reduction Orders

Example 2 (Cont.)

> |t|: The number of occurrences of x in t.
» The order >9: s >9 t iff |s| > |t| and |s|; > |¢|, for all x.

» >9 is a reduction order.
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» Polynomial orders
» Simplification orders:

» Recursive path orders
» Knuth-Bendix orders



Methods for Construction Reduction Orders

» Polynomial orders
» Simplification orders:

» Recursive path orders
» Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also automatically.



Lexicographic Path Order

Main idea behind recursive path orders:
» Two terms are compared by first comparing their root
symbols.
» Then recursively comparing the collections of their immediate
subterms.
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Main idea behind recursive path orders:

» Two terms are compared by first comparing their root
symbols.

» Then recursively comparing the collections of their immediate
subterms.

» Collections seen as multisets yields the multiset path order.
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Lexicographic Path Order

Main idea behind recursive path orders:

>

Two terms are compared by first comparing their root
symbols.

Then recursively comparing the collections of their immediate
subterms.

Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

Collections seen as tuples yields the lexicographic path order.

Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)



Lexicographic Path Order

Definition 1

Let F be a finite signature and > be a strict order on F (called the
precedence). The lexicographic path order >,,0on T'(F,V) induced
by > is defined as follows:

S >Ipo t iff
(LPO1) teVar(s) and t #s, or
(LPO2) s= f(s1,...,8m), t=g(t1,...,t,), and
(LPO2a) s; >y t for some 4, 1 <i<m, or
(LPO2b) f>gand s>, t; forall j, 1<j<n,or
(LPO2c) f =g, s>po tj forall j, 1 <j<mn, and there exists ¢,
1<i<m such that sy =t1,...8,.1 =t;_1 and s; >ipo .

>1po Stands for the reflexive closure of >,,.
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(LPO1) teVar(s) and t #s, or
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(LPO2a) s; >y t for some 4, 1 <3 <m, or
(LPO2b) f>gand s>, t; forall j, 1<j<n,or
(LPO2c) f=g, s> t; forall j, 1 <j<n, and there exists ¢,
1<i<m such that 51 =1%1,...8,_1 =t;_1 and s; >, t;.

Example 3
F =A{f,i,e}, fis binary, i is unary, e is constant, with i > f > e.
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Lexicographic Path Order

S$>po t iff
(LPO1) teVar(s) and t #s, or
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Example 3

F =A{f,i,e}, fis binary, i is unary, e is constant, with i > f > e.
+ J(,€) >ipo @ by (LPO1)
» i(e) > € by (LPO2a), because e >, e.
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» Since i > f, (LPO2b) reduces it to the problems:
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Lexicographic Path Order

S$>po t iff
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Example 3 (Cont.)
F ={f,i,e}, [ is binary, i is unary, e is constant, with i > f > e.

> i(f(2,) > Fi(2),i(y)):
» Since i > f, (LPO2b) reduces it to the problems:
i(f(2,9)) >iy, i(2) and i(f(z,y)) >}, i(y)-
»i(f(z,y)) >}’po i(z) is reduced by (LPO2c) to i(f(z,y)) >§p0 x
and f(z,y) >}, «, which hold by (LPO1).
» i(f(x,Y)) >po i(y) is shown similarly. o™\
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Lexicographic Path Order

S$>po t iff
(LPO1) teVar(s) and t #s, or
(LPO2) s=f(s1,.--,8m), t =g(t1,...,tn), and
(LPO2a) s; >y t for some 4, 1 <3 <m, or
(LPO2b) f>gand s>, t; forall j, 1<j<n,or
(LPO2c) f=g, s> t; forall j, 1 <j<n, and there exists ¢,
1<i<m such that 51 =1%1,...8,_1 =t;_1 and s; >, t;.

Example 3 (Cont.)
F ={f,i,e}, [ is binary, i is unary, e is constant, with i > f > e.

> f(f(z,y),2) >})p0 f(z, f(y,2))). By (LPO2c) with i = 1:
» f(f(z,y),2) >po © because of (LPO1).



Lexicographic Path Order

S$>po t iff
(LPO1) teVar(s) and t #s, or
(LPO2) s=f(s1,.--,8m), t =g(t1,...,tn), and
(LPO2a) s; >y t for some 4, 1 <3 <m, or
(LPO2b) f>gand s>, t; forall j, 1<j<n,or
(LPO2c) f=g, s> t; forall j, 1 <j<n, and there exists ¢,
1<i<m such that 51 =1%1,...8,_1 =t;_1 and s; >, t;.

Example 3 (Cont.)
F ={f,i,e}, [ is binary, i is unary, e is constant, with i > f > e.

> f(f(,y),2) >1, f(x, f(y,2))). By (LPO2c) with i = 1:
» f(f(z,y),2) >ipo = because of (LPO1).
» f(f(z,y),2) >l7po f(y,z): By (LPO2c) with i = 1:
C F(f(2.),2) >0 y and F(f(2,9), 2) >0 = by (LPOL).
» f(z,y) >po y by (LPO1).



Lexicographic Path Order

S$>po t iff
(LPO1) teVar(s) and t #s, or
(LPO2) s=f(s1,.--,8m), t =g(t1,...,tn), and
(LPO2a) s; >y t for some 4, 1 <3 <m, or
(LPO2b) f>gand s>, t; forall j, 1<j<n,or
(LPO2c) f=g, s> t; forall j, 1 <j<n, and there exists ¢,
1<i<m such that 51 =1%1,...8,_1 =t;_1 and s; >, t;.

Example 3 (Cont.)
F ={f,i,e}, [ is binary, i is unary, e is constant, with i > f > e.

> f(f(,y),2) >1, f(x, f(y,2))). By (LPO2c) with i = 1:
» f(f(z,y),2) >ipo = because of (LPO1).
» f(f(z,y),2) >l7po f(y,z): By (LPO2c) with i = 1:
> f(f(@,9),2) >po y and f(f(x,y),2) >po z by (LPO1).
» f(z,y) >po y by (LPO1).
» f(x,y) >ipo « by (LPO1). ™\



Reduction Orders

» Reduction orders are not total for terms with variables.

» For instance, f(x) and f(y) can not be ordered.

» f(z,y) and f(y,z) can not be ordered either.

» However, many reduction orders are total on ground terms.

» Fortunately, in theorem proving applications one can often
reason about non-ground formulas by considering the
corresponding ground instances.

» In such situations, ordered rewriting techniques can be applied.



Ordered Rewriting

» Given: A reduction order > and a set of equations E.

» The rewrite system E~ is defined as
E>:={soc»>ro|(s~vteFort~secFE)andso>to}

» The rewrite relation —pg> induced by E~ represents ordered
rewriting with respect to E and >.



Ordered Rewriting

Example 4
» If > is a lexicographic path ordering with precedence
+>a>b>c, thenb+c>c+b>c.
» Let E:={x+y~y+a}.
» We may use the commutativity equation for ordered rewriting.

» (b+ce)+c—p> (c+b)+c—p>c+(c+D).



Ordered Rewriting

» If > is a reduction ordering total on ground terms, then E~
contains all (non-trivial) ground instances of an equation
s~teF, either as a rule so — to or a rule to — so.

» A rewrite system R is called ground convergent if the induced
ground rewrite relation (that is, the rewrite relation - g
restricted to pairs of ground terms) is terminating and
confluent.

» A set of equations F is called ground convergent with respect
to > if E” is ground convergent.



Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

where o = mgu(s,u), to ¥ so, vo } ro, and u is not a variable.

The equation (r[t] » v)o is called an ordered critical pair (with
overlapped term r[u]o) between s~ t and r[u] ~ v.



Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

where 0 = mgu(s,u), to } so, vo } ro, and u is not a variable.

The equation (r[t] » v)o is called an ordered critical pair (with
overlapped term r[u]o) between s~ t and r[u] ~ v.

Lemma 1

Let > be a ground total reduction ordering. A set E of equations is
ground convergent with respect to > iff for all ordered critical pairs
(r[t] ~v)o (with overlapped term r[u]o) between equations in E
and for all ground substitutions o, if r{u]op > r[t]oy and

rlu]op >vop, then r(tlop | g> vop.



Critical Pairs

Example 5
» Let E:={f(f(z)) ~g(x)} and > be the LPO with f > g.

» Take a critical pair between the equation and its renamed

copy, f(f(x)) ~g(z) and f(f(y))~g(y).
F(f(f(x)))

RN

f(g(2)) 9(f(x))



Critical Pairs

Example 5
» Let E:={f(f(z)) ~g(x)} and > be the LPO with f > g.

» Take a critical pair between the equation and its renamed

copy, f(f(x)) ~g(z) and f(f(y))~g(y).
F(f(f(x)))

RN

f(g(2)) 9(f(x))

» f(f(f(2))) > f(g(x)) and f(f(f(2))) > g(f(x)), but
f(g(x)) > g(f(2)).



Critical Pairs

Example 5
» Let E:={f(f(z)) ~g(x)} and > be the LPO with f > g.

» Take a critical pair between the equation and its renamed

copy, f(f(x)) ~g(z) and f(f(y))~g(y).
F(f(f(x)))

RN

f(g(2)) 9(f(x))

» f(f(f(2))) > f(g(x)) and f(f(f(2))) > g(f(x)), but
f(g(x)) > g(f(2)).

» FE is not ground convergent with respect to >.



Adding Critical Pairs to Equations

» Since critical pairs are equational consequences, adding a
critical pair to the set of equations does not change the
induced equational theory.

» If £ is obtained from E by adding a critical pair, then
Rp=RE.

» The idea of adding a critical pair as a new equation is called
“completion”.



Convergence

Example 6

> Let B = {f(f(2)) » g(x), f(9(x)) » g(f(2))}
» Let > be the LPO with f > g.



Convergence

Example 6

> Let B = {f(f(2)) » g(x), f(9(x)) » g(f(2))}
» Let > be the LPO with f > g.
» E' has two critical pairs. Both are joinable:

FCF () f(f(g()))

7N /

flg(@)) —9(f(2))  fl9(f(2)))

\

9(f(f(2))) — g(9(x))



Convergence

Example 6

> Let B = {f(f(2)) ~ g(2), f(g(2)) ~» g(f(2))}
» Let > be the LPO with f > g.
» E' has two critical pairs. Both are joinable:

FCF () f(f(g()))

7N /

flg(@)) —9(f(2))  fl9(f(2)))

\

9(f(f(2))) — g(9(x))

» E’ is (ground) convergent.



Ordered Completion

» Described as a set of inference rules.

» Parametrized by a reduction ordering >.

» Works on pairs (E, R), where E is a set of equations and R is
a set of rewrite rules.

» E;R+ E'; R means that E’; R’ can be obtained from E; R
by applying a completion inference.



Ordered Completion: Notions

» Derivation: A (finite or countably infinite) sequence
(Eo; Ro) + (Ev; Ry )
» Usually, Ejy is the set of initial equations and Ry = @&.

v

The limit of a derivation: the pair E,; R, where

Ew 2=UmE]’ and Rw Z=Uij.

>0 j>i i>0 j>i

» Goal: to obtain a limit system that is ground convergent.



Ordered Completion: Notation

» w: Disjoint union

» s> t: Strict encompassment relation. An instance of ¢ is a
subterm of s, but not vice versa.

» sxtstands for sxtortws.

CP-(E U R): The set of all ordered critical pairs, with the

ordering >, generated by equations in F/ and rewrite rules in R
treated as equations.

v



Ordered Completion: Rules

DEDUCTION:

ORIENTATION:
DELETION:

COMPOSITION:

E;R-FEu{s~t}hR
if sste CPL(EUR).

Euw{szt};R+ E;Ru{s—>t}, if s>t.
Fw{s~s};R+E;R.
E;Ry{s—>t}+FE;RuU{s—>r},

if ¢ —RUE>T.



Ordered Completion: Rules

SIMPLIFICATION: Eu{s=t};R+- Eu{u~t};R,
if s>puors—pg>uwith lo - ro

forizreE s>l

COLLAPSE: E;Ru{s—>t}-Eu{u~t};R,
if s >puors—pg>uwith lo > ro

forlzreFE, s>l



Ordered Completion: Properties

Theorem 2

Let (Eo; Ro), (E1; R1),... be an ordered completion derivation
where all critical pairs are eventually generated (a fair derivation).
Then these three properties are equivalent for all ground terms s
and t:

(1) EyEsw~t.

(2) S ‘l‘E;URw t

(3) s leug, t for somei> 0.

This theorem, in particular, asserts the refutational completeness
of ordered completion.



Proving by Ordered Completion: Example

Given:
1. (z-y)-zma-(y-2).
T-en .

x-i(z) ~e.

N

r-IrR®e.

Prove

Goal: z-y~y-x.



Proving by Ordered Completion: Example

Proof by ordered completion:

>

>

v

Skolemize the goal: a-b~b-a.

Take LPO as the reduction ordering with the precedence
i>f>e>a>b

Ey={(z-y)-zrnx-(y-2), x-envzx, v-i(x)~e, z-x~e}
Ry:=0
Start applying the rules.



Proving by Ordered Completion: Example

Ev={(z-y)-zrx-(y-2), v-emx, v-i(x)~e, v -x~e}

Ro =g
Apply ORIENT 4 times:

E4:®

Ry={(z-y)-z=2-(y-2), x-e>x, z-i(x) e, v-T—>e}



Proving by Ordered Completion: Example

Ev={(z-y)-zrx-(y-2), v-emx, v-i(x)~e, v -x~e}

Ro =g
Apply ORIENT 4 times:

E,=0
Ry={(z-y)-z=2-(y-2), x-e>x, z-i(x) e, v-T—>e}

Apply DEDUCE with the rules (z-y)-z—>z-(y-z) and z-e > x
to the overlapping term (z-¢€) -z, and then ORIENT:

Eg=0
Re={(z-y)-z>2-(y-2), z-e>z, xi(z) >e, -7 e,

x1-(e-x2) > x1 - 12}



Proving by Ordered Completion: Example

E6:®
Ro={(a-y)-z~a-(y2) s e, a-i(a) > e, v-a—e
r1-(e-x2) = 122}
Apply DEDUCE with the rules 1 - (e x9) - x1 -z and z-i(z) — e
to the overlapping term z; - (e-i(e)):
E;={x1-i(e) »x1-€e}
Rr={(z-y)-z—z-(y-2), x-e>z, v-i(x) e, x-x e,

x1-(e-x9) »> x1 - 12}



Proving by Ordered Completion: Example

E;={x1-i(e) »x1-e}
Rr={(z-y)-z—z-(y-2), z-e>x, z-i(z) >e, x-x e,
x1-(e-xg) > 1 - 29}

Apply ORIENT to z7 -i(e) ~ 21 - e and then COMPOSITION with
the rule x-e - z:

Egzg
Ry={(z-y)-z—x-(y-2), x-e>x, v-i(z) >e, - e,

x1-(e-x9) > x1 -2, -i(e) > x}



Proving by Ordered Completion: Example

Ey=0
Ry={(z-y)-z—z-(y-2), z-e>x, z-i(z) >e, x - e,
x1-(e-x2) > 122, x-i(e) >z}

Apply DEDUCE with the rules z -2 — e and x -i(e) — z to the
overlapping term e-i(e), and then ORIENT:

=0
Ru={(z-y) - z-2-(y-2), x-e>x, z-i(x) >e, v-x—>e,

x1-(e-x3) > x1 - 22, T i(e) > x, i(e) > e}



Proving by Ordered Completion: Example

EF1=0
Ru={(z-y)-z-z-(y-2), z-e>zx, x-i(z) >e, -z e,

z1-(e-x2) > w122, x-i(e) >z, i(e) > e}
Apply COLLAPSE to z -i(e) - x with i(e) — e:

Ep={x-e~ux}
Ro={(z-y)-z-z-(y-2), x-e>zx, x-i(z) >e, x-x—>e,

x1-(e-xg) > x1 - x9, i(e) > e}



Proving by Ordered Completion: Example

Ep={x-e~ux}
Rop={(z-y)-z-z-(y-2), z-e>zx, x-i(z) >e, x-x—>e,
x1-(e-xg) > x1 - x9, i(e) > e}

Apply SIMPLIFICATION to z - e~ x with -e — x and then
DELETE to the obtained z ~ x:

Fiuu=9
Ruyu={(z-y)-z-2-(y-2), x-e>x, z-i(x) >e, v-x—>e,

x1-(e-x2) = x1 - 29, i(e) > e}



Proving by Ordered Completion: Example

Fiyu=9
Ru={(z-y)-z-z-(y-2), z-e>zx, x-i(z) >e, x-x—>e,
x1-(e-xg) > x1 - x9, i(e) > e}

Apply DEDUCE to (z-y) -z —> x-(y-z) and z-i(z) — e with the
overlapping term (z-i(z)) -z and then ORIENT:

Fig=0
Rig={(z-y) - z-2x-(y-2), x-e>x, z-i(x) >e, -z —>e,

x1- (€ @2) > @12, i(e) > €, w1+ (i(21) - 22) > € 32}



Proving by Ordered Completion: Example

Fig=0
Rig={(z-y)-z-z-(y-2), z-e>zx, x-i(z) >e, -z e,

r1-(e-x2) > 122, i(e) > €, x1-(i(21) 72) > €12}

Apply DEDUCE to z; - (i(x1) - 2) - e-x9 and x - x — e with the
overlapping term x1 - (i(x1) -i(x1)):

Eir={e-i(z)»x-e}
R17={($-y)-z—>m-(y-z), xr-e—>x, x-i(x)—>e, Tr-xr —>e,

x1- (€ @2) > @12, i(e) > e, w1+ (i(21) - 22) > € 32}



Proving by Ordered Completion: Example

Eir={e-i(x)~z-e}
Rir={(z-y) z-2-(y-2), z-e>x, x-i(x) >e, x-x—>e,

r1-(e-x2) > 122, i(e) > e, x1-(i(21) 72) > €12}

Apply SIMPLIFICATION to e-i(z) » x - e with x-e — x and then
ORIENT:

Fi9g=0
Riyg={(z-y)-z-2x-(y-2), x-e>x, z-i(x) >e, -z —>e,
x1-(e-x9) = x1 -2, i(e) > e, x1-(i(x1) - x2) > € xa,

e-i(x) > x}



Proving by Ordered Completion: Example

Eio=0
Ryo={(z-y)-z-z-(y-2), z-e>zx, x-i(z) >e, -z e,
x1-(e-xg) > w129, i(e) » e, x1-(i(x1) 22) > €- a2,

e-i(x) > x}

Apply DEDUCE to 1 - (e-x2) = x1 -2 and e-i(x) — = with the
overlapping term z1 - (e-i(x2)) and then ORIENT:

FEy =@
Roy={(z-y) - z-2x-(y-2), x-e>x, z-i(x) >e, v-x—>e,
x1-(e-x9) »> x1 -2, i(e) > e, x1-(i(x1) - x2) > €- X2,

e-i(x) > x, x1-i(x2) > 1 - X2}



Proving by Ordered Completion: Example

Ey =@
Ry ={(z-y)-z-z-(y-2), z-e>zx, x-i(z) >e, x-x—>e,
x1-(e-x9) = x1- 19, i(e) > e, x1-(i(x1) x2) > €- X9,

e-i(x) >z, x1-i(x2) > 11 X2}

Applying COLLAPSE, SIMPLIFICATION, and DELETE, we get rid
of x-i(x) —e:

Eou=92
Royy={(z-y)-z-2x-(y-2), x-e>x, z-x—>e,
x1-(e-x9) »> x1 -2, i(e) > e, x1-(i(x1) - x2) > €- X2,

e-i(x) > x, x1-i(x2) > 1 - X2}



Proving by Ordered Completion: Example

Eyy=0
R24:{({1}‘-y).z—>x.(y.z)7 CL‘-6—>$7 $'$—>€,
x1- (e w2) = x1- 22, i(e) > e, x1-(i(21) 22) > €- 29,

e-i(x) >z, x1-i(x2) > 11 X2}

Applying COLLAPSE and ORIENT, we replace e¢-i(x) — x with
€ T > xT

FEoyg =0
Ry={(z-y)-z—-2x-(y-2), x-e>x, z-x—>e,
x1-(e-x9) = x1 -2, i(e) > e, x1-(i(x1) - x2) > €- T,

e-x—>x, T1-i(12) > T1- T2}



Proving by Ordered Completion: Example

Eo=0
Ry ={(z-y)-z—2-(y-2), z-e>x, x-x—e,
x1- (e w2) = x1- 22, i(e) > e, x1-(i(21) 22) > €- 29,
e-x—>x, x1-i(z2) > 71 T2}
Applying COLLAPSE and DELETE, we get rid of
x1-(e-x2) = x1 - 29
FEog =@
Rog={(z-y)-z—-x-(y-2), x-e>x, z-x—>e,

i(e) > e, x1-(i(x1) 22) > €- 29,

e-x—x, T1-i(T2) > T1- T2}



Proving by Ordered Completion: Example

Eox =@
Ros={(z-y)-z—z-(y-2), z-e>x, x-x—e,
i(e) > e, w1 (i(x1) 22) > €- X9,
e-x—x, x1-i(wr2) > 21 T2}
Apply DEDUCE to e-x — x and x1 -i(x2) = x1 - x2 with the
overlapping term e-i(x2):
Ea ={i(x1) e -x2}
Ry={(z-y)-z—-2x-(y-2), x-e>x, v-x—>e,

i(e) > e, x1-(i(x1) 22) > €- 29,

e-x—x, T1-i(T2) > T1- T2}



Proving by Ordered Completion: Example

Eag = {i(22) » e 22}
Ry={(z-y) z—>2-(y-2), ve>x z-z—>e,
i(e) = e, x1-(i(21) - 22) > € 22,

e-x—x, x1-i(wr2) > 21 T2}

Apply SIMPLIFICATION to i(x1) ~ e x5 with e- 2 — = and then
ORIENT:

FEs1 =@
Rs1={(z-y)-z-x-(y-2), x-e>x, z-x—>e,
i(e) > e, x1-(i(x1) 22) > €- 29,

e-x—>x, z1-i(z2) > 2122, i(x) > 2}



Proving by Ordered Completion: Example

E3n =9
fizgl:{(t’l}‘-y).z—>:L'.(y.2;)7 CL‘-6—>$7 $'$—>€,
i(e) = e, x1-(i(21) - 22) > € 22,

e x> x, x1-i(z2) > 2172, i(T) > 7}
Apply COLLAPSE and DELETE, we get rid of i(e) — e:

FE33=0
Ryz={(zy)- z—>2-(y 2), ze>z, z-2>e,
x1-(i(x1) - w2) > €29, e >,

x1-i(xe) > 11 - 29, () > 2}



Proving by Ordered Completion: Example

Esz =2
R33:{({1}‘-y).z—>x.(y.z)7 CL‘-6—>$7 $'$—>€,
x1-(i(r1) - 22) > €- 22, €- 7 > 1,

x1-i(xe) = 11 - 29, i(x) > 2}

Applying COMPOSITION, we replace x; - (i(z1) - z2) — ez by
x1 - (i(2z1) - 2) > x2:

FEsy =@
Ryy={(z-y)-z-x-(y-2), x-e>x, z-x—>e,
x1-(i(x1) - 22) > 29, €-T >,

x1-i(xe) > 1 - X2, i(T) > T}



Proving by Ordered Completion: Example

B3y =02
R34:{({1}‘-y).z—>x.(y.z)7 CL‘-6—>$7 $'$—>€,
w1 - (i(r1) - 22) = 22, €- T > I,

x1-i(xe) = 11 - 29, i(x) > 2}

Applying SIMPLIFICATION and ORIENT, we replace
x1 - (i(z1) - @2) = 22 by 21 - (21 - 22) > X2

Fsg =@
Rss={(z-y) - z-x-(y-2), x-e>x, z-x—>e,
r1-(71-72) > T2, €T > 7T,

x1-i(xe) > 1 - X2, i(T) > T}



Proving by Ordered Completion: Example

Ess=0
Rss={(z-y)-z—2-(y-2), z-e>x, x-x—e,
x1-(i(x1) - 22) > X9, €-T >,
x1-i(xe) = 11 - 29, i(x) > 2}
Apply DEDUCE to (z-y) -2z —>x-(y-2z) and z -z — e with the
overlapping term (z1 - x2) - (%1 - 2), then ORIENT:
FEsr =@
Ry7={(z-y)-z-x-(y-2), x-e>x, z-x—>e,
w1 (21-22) > T2, € > 2, T1-i(22) > T1 - T2,

i(x) > x, x1- (22 (21 -22)) > €}



Proving by Ordered Completion: Example

E37r=0

Ryr={(z-y) z—>2-(y-2), - e>z, x-7—>e,
x1- (21 -22) > T2, e > x, x1-1(12) > T1 - X2,
i(x) > x, x1- (22 (21 -22)) > €}

Apply DEDUCE to x1 - (x1-x2) > 22 and 1 (z2- (z1-22)) — €
with the overlapping term z1 - (21 - (z2- (z1-22))), then ORIENT:

FEsg =@
Ryg={(z-y)-z-x-(y-2), x-e>x, z-x—>e,
w1 (21-22) = T2, € > 2, T1-i(22) > T1 - T2,

i(x) >z, x1-(x2- (x1-22)) > €, x2- (21 -22) > 1 - €}



Proving by Ordered Completion: Example

E3g =0
R39:{({1}‘-y).z—>x.(y.z)7 CL‘-6—>$7 $'$—>€,
x1-(T1-22) = T2, €-x = x, x1-1(x2) > 1 - T,

i(z) > @, o1 (22 (21-22)) > €, T2 (21 -72) > 71 €}
Apply COMPOSITION to g - (x1-23) = x1 - e with z-e - x:

Eyp=0
Ry={(z-y)-z-x-(y-2), v-e>x, x-x—>e,
x1-(T1-22) > T2, €-x = x, x1-i(x2) > 1 - T2,

i(x) > x, x1- (22 (21 -22)) > €, wa-(x1-12) > 21}



Proving by Ordered Completion: Example

Ep=0

Ry={(z-y)- z-2-(y-2), z-e>x, -z e,
x1- (21 -22) > T2, e > x, x1-1(12) > T1 - X2,
i(z) >z, x1- (22 (x1-22)) > €, x2-(21-22) > 21}

Apply DEDUCE to 1 - (%1 -x2) = x2 and x2 - (1 - x2) — 21 with
the overlapping term xs - (z2 - (21 - x2)):

Ejo={r1-22 % 22 21}
Rp={(z-y) - z-2x-(y-2), x-e>x, v-x—>e,
w1 (21-22) > T2, € > 2, T1-i(22) > T1 - T2,

i(x) >z, x1-(x2- (x1-22)) > €, x2- (21 -22) > 1 - €}



Proving by Ordered Completion: Example

Egp={x1- 2o~ x3-21}
R42:{({1}‘-y).z—>x.(y.z)7 CL‘-6—>$7 $'$—>€,
x1-(T1-22) = T2, €-x = x, x1-1(x2) > 1 - T,

i(x) > x, x1-(x2-(x1-22)) > €, x2- (1 -22) > 1 - €}

The equation x1 - x3 » x9 - x1 joins the goal a-b~ b-a. Hence, the
goal is proved.
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