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Chapter 4:
Exploration Using Quantifier Predicate 
Logic

à Quantifier Rules for Proving

� Existentially Quantified Formulae in the Knowledge Base

� Rule ("Skolem Constants")

If

$
Ξ,Η,...

F

is in the knowledge base (where Ξ,Η,... are the only free variables in F)

then you can add

FΞ,Η,¼¬x0,y0,...

to the knowledge base, where x0, y0, ... are new object constants (i.e. constants that do neither occur in the knowledge base
nor in the goal formula). 

(One calls these constants "Skolem constants".)

� Wording

Application of this rule is often announced in the following way.

"We know

$
Ξ,Η,...

F.

Therefore we can chose x0, y0, ... such that

FΞ,Η,¼¬x0,y0,....

� Rule ("Skolem Functions")

If

"
Α,Β,...

$
Ξ,Η,...

F
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is in the knowledge base (where Α,Β,Ξ,Η,... are the only free variables in F)

then you can add

FΞ,Η,¼¬x0@Α,Β,...D,,y0@Α,Β,...D,...

to  the  knowledge  base,  where  x0,  y0,  ...  are  new  function  constants  (i.e.  function  constants  that  do  neither  occur  in  the
knowledge base nor in the goal formula). 

(One calls these constants "Skolem function constants".)

� Wording

Application of this rule is often announced in the following way.

"We know

"
Α,Β,...

$
Ξ,Η,...

F

Therefore we can chose functions x0, y0, ... such that

FΞ,Η,¼¬x0@Α,Β,...D,,y0@Α,Β,...D,...

� Existentially Quantified Formulae as Proof Goals

� Rule ("Find Appropriate Terms")

If the proof goal is

$
Ξ,Η,...

F

(where Ξ,Η,... are the only free variables in F)

then it suffices to find terms s, t, ... such that

FΞ,Η,¼¬s,t,...

can be proved.

� Universally Quantified Formulae in the Knowledge Base

The appropriate rule for formulae of the form

"
Ξ,Η,...

F

in the knowledge base was already given in Chapter 3.
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� Universally Quantified Formulae as Proof Goals

The appropriate rule for proof goals of the form

"
Ξ,Η,...

F

was already given in Chapter 3.

� The Interplay Between the Quantifier Rules

The interplay  between the proof  rules for  universally  and existentially quantified formulae in  the knowledge base and as
proof goals is the most important and characteristic aspect of full predicate logic.

Typically, one has proof goals of the form

"
Α

$
Ξ

F

or, as special case, proof goals of the form

$
Ξ

F

and formulae in the knowledge base of the form

"
Β

$
Η

G H1 aL

or the special form

$
Η

G H1 bL

In such situations one normally proceeds by taking "an a0 arbitrary but fixed" and tries to find a term s such that

FΑ¬a0,Ξ¬s.

The  term  s  is  then  typically  constructed  from the  constants  available  in  the  knowledge  base  and,  in  particular,  from the
Skolem constant y0 that can be introduced because of (1a) or (1b), i.e. for which

FΗ¬y0@ΒD

or

FΗ¬y0

holds.
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à Examples

� The Notion of Limit

� Definition

In the sequel, some of the variables, like ’x’, range over the real numbers, some others, like ’n’, over the natural numbers,
and some others,  like ’f’,  over sequences of  real  numbers (i.e.  over functions with natural  number input and real  number
output). 

Now we define

limit @f, aD� "
Ε>0

$
N

"
n³N
H  f @nD- a¤ < ΕL, Hdefinition of limitL

Hf + gL@nD = f @nD+ g@nD. Hdefinition of sequence sumL

� Available Knowledge

We assume that we have "all" knowledge available on the arithmetical operations, like ’+’, ’−’, ’  ¤’<’, etc., for example

 x + y¤ £  x¤+  y¤.

� Proposition

We want to prove that

i
k
jjjí
lom
no

limit @f, aD
limit @g, bD =

y
{
zzzÞ limit @f + g, a+ bD. Hlimit of sumL

� Proof

Let f, g, a, b be arbitrary but fixed and assume

limit @f, aD, HAf L

limit @g, bD. HAgL

We have to prove

limit @f + g, a+ bD. HGL

By (definition of limit), we have to prove

"
Ε>0

$
N

"
n³N
H  Hf + gL@nD- Ha+ bL¤ < ΕL.

For this, we take Ε arbitrary but fixed, assume
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Ε > 0, HAΕL

and have to find an N0 such that

"
n³N0
H  Hf + gL@nD- Ha+ bL¤ < ΕL. HGN0L

Now, by (Af) and (Ag) and (definition of limit), we know that

"
Ε>0

$
N

"
n³N
H  f @nD- a¤ < ΕL,

"
Ε>0

$
N

"
n³N
H  g@nD- b¤ < ΕL,

and, hence, by (AΕ) and (arithmetic), we know in particular that

$
N

"
n³N
H  f @nD- a¤ < Ε �2L,

$
N

"
n³N
H  g@nD- b¤ < Ε �2L.

Hence, we can choose two natural numbers Nf and Ng such that

"
n³Nf
H  f @nD- a¤ < Ε �2L, HANf L

"
n³Ng
H  g@nD- b¤ < Ε �2L, HANgL

We now take

N0 := max@Nf, NgD Hdefinition of N0L

and try to prove (GN0). In fact, for arbitrary but fixed n with

n ³ N0 HAnL

we have

 Hf + gL@nD- Ha+ bL¤

= by Hdefinition of sequence sumL

 Hf @nD+ g@nDL- Ha+ bL¤

= by HarithmeticL

 Hf @nD- aL+ Hg@nD- bL¤

£ by HarithmeticL

 f @nD- a¤+  g@nD- b¤

< by HAnL, Hdefinition of N0L, HANf L, HANgL, HarithmeticL

Ε �2 + Ε �2

= by HarithmeticL
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Ε.

� Annotated Proof

We  now  present  the  same  proof  with  additional  annotations  and  details  (in  red  color)  explaining  the  proof  techniques
applied. 

Let f0, g0, a0, b0 be arbitrary but fixed and assume

limit @f0, a0D, HAf L

limit @g0, b0D. HAgL

We have to prove

limit @f0 + g0, a0+ b0D. HGL

(Note that f0, etc. are new constants and must not be confused with the variables appearing in the (defintion of limit) etc.)

By (definition of limit), using the substitutions

f ¬ f0 + g0, a¬ a0+ b0,

we have to prove

"
Ε>0

$
N

"
n³N
H  Hf0 + g0L@nD- Ha0+ b0L¤ < ΕL.

For this, we take Ε0 arbitrary but fixed, assume

Ε0 > 0, HAΕL

and have to find an N0 such that

"
n³N0
H  Hf0 + g0L@nD- Ha0+ b0L¤ < Ε0L. HGN0L

Now, by (Af) and (Ag) and (definition of limit), using the substitutions

f ¬ f0, a¬ a0

we know that

"
Ε>0

$
N

"
n³N
H  f0@nD- a0¤ < ΕL,

and using the substitution

f ¬ g0, a¬ b0

we know that

"
Ε>0

$
N

"
n³N
H  g0@nD- b0¤ < ΕL,

and, hence, by (AΕ) and (arithmetic), we know in particular that
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$
N

"
n³N
H  f0@nD- a0¤ < Ε0�2L,

$
N

"
n³N
H  g0@nD- b0¤ < Ε0�2L.

(The (arithmetic) used here infers

Ε0�2 > 0 H1L

from (AΕ). Now

"
Ε>0

$
N

"
n³N
H  f0@nD- a0¤ < ΕL,

which is an abbreviation for

"
Ε
JΕ > 0 Þ $

N
"

n³N
H  f0@nD- a0¤ < ΕLN,

implies

Ε0�2 > 0 Þ $
N

"
n³N
H  f0@nD- a0¤ < Ε0�2L. H2L

Now, from (1) and (2), by modus ponens, we obtain

$
N

"
n³N
H  f0@nD- a0¤ < Ε0�2L

)

Hence, we can choose two natural numbers Nf and Ng such that

"
n³Nf
H  f0@nD- a0¤ < Ε0�2L, HANf L

"
n³Ng
H  g0@nD- b0¤ < Ε0�2L. HANgL

We now take

N0 := max@Nf0, Ng0D Hdefinition of N0L

and try to prove (GN0). In fact, for arbitrary but fixed n0 with

n0 ³ N0 HAnL

we have

 Hf0 + g0L@n0D- Ha0+ b0L¤

= by Hdefinition of sequence sumL

 Hf0@n0D+ g0@n0DL- Ha0+ b0L¤

= by HarithmeticL

 Hf0@n0D- a0L+ Hg0@n0D- b0L¤
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£ by HarithmeticL

 f0@n0D- a0¤+  g0@n0D- b0¤

£ by HAnL, Hdefinition of N0L, HANf L, HANgL, HarithmeticL

Ε0�2 + Ε0�2

= by HarithmeticL

Ε0.

(Each of the steps in the above sequence is a symbolic computation proof step. For example

 Hf0 + g0L@nD- Ha0+ b0L¤ =  Hf @nD+ g@nDL- Ha+ bL¤

because, by (definition of sequence sum) using the substitutions

f ¬ f0, g ¬ g0, n¬ n0

we have

Hf0 + g0L@n0D = f0@n0D+ g0@n0D

and, hence, by replacing

Hf0 + g0L@n0D

by

f0@n0D+ g0@n0D

in

 Hf0 + g0L@nD- Ha0+ b0L¤

we obtain

 Hf0 + g0L@nD- Ha0+ b0L¤ =  Hf @nD+ g@nDL- Ha+ bL¤ .

)

(From the above chain of proof steps, we can conclude

 Hf0 + g0L@n0D- Ha0+ b0L¤ < Ε

in the following way: First,

 Hf0 + g0L@n0D- Ha0+ b0L¤ =  Hf0@n0D+ g0@n0DL- Ha0+ b0L¤

and

 Hf0@n0D+ g0@n0DL- Ha0+ b0L¤ =  Hf0@n0D- a0L+ Hg0@n0D- b0L¤

implies
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 Hf0 + g0L@n0D- Ha0+ b0L¤ =  Hf0@n0D- a0L+ Hg0@n0D- b0L¤

by the transitivity rule for equality.

Second,

 Hf0 + g0L@n0D- Ha0+ b0L¤ =  Hf0@n0D- a0L+ Hg0@n0D- b0L¤

and 

 Hf0@n0D- a0L+ Hg0@n0D- b0L¤ £  f0@n0D- a0¤+  g0@n0D- b0¤

implies

 Hf0 + g0L@n0D- Ha0+ b0L¤ £  f0@n0D- a0¤+  g0@n0D- b0¤.

This can be concluded from the general proposition

Hx = yL ß Hy £ zL Þ x £ z

by appropriate substitutions and modus ponens.

Exercise: Prove the above proposition. Which laws for £ do you need?)

� Equivalences and Partitions

� Overview

We will start from the basic notions of set theory like ’Î’, ’ Ì’, etc. and assume that their elementary properties are known
(i.e. available in the "knowledge base"). 

In addition, we will assume that the inference rules for the set quantifiers are known: The set quantifiers allow to construct
terms of the following form:

8x È F<

and

9T È
x

F=,

where x is a variable,F is a formula, and T is a term. We anticipate here the chapter on set theory.

We will define two important notions of elementary set theory

é equivalences and

é partitions

and explore their interrelation.

In the sequel, the variables R, X, P, p, x etc. range over arbitrary objects ("sets").
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� Inference Rules for the Set Quantifiers

First note that

9T È
x

F=

is an abbreviation for 

9y Ë $
x
HHy = TL ßFL=.

If one has to prove that

S Î 8x È F<,

where S is a term, it suffices to prove that 

Fx¬S.

Conversely, if 

S Î 8x È F<

is in the knowledge base, one can also add

Fx¬S

to the knowledge base.

Hence, in order to prove

S Î 9T È
x

F=

one has to find a term U such that

S = Tx¬U ßFx¬U .

Conversely, if 

S Î 9T È
x

F=

is in the knowledge base, one can introduce a new constant Η and add

S = Tx¬Η ìFx¬Η

to the knowledge base.

� Available Knowledge

We  just  give  the  definitions  or  axioms  for  some  basic  notions  of  set  theory.  In  addition,  we  assume  that  all  elementary
properties of these notions are known.
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HA = BL� "
x
HHx Î AL� Hx Î BLL Hset equalityL

HXa, b\ = Xu, v\L� HHa = uL ß Hb = vLL Hpair equalityL

HA Í BL� "
xÎA

x Î B H Í :L
Æ = 8x È x ¹ x< HÆ :L

AÜB = 8x È x Î A Þ x Î B< HÜ :L

AÝB = 8x È x Î A ß x Î B< HÝ :L

U@AD = 9x Ë $
aÎA

x Î a= HU :L

A �B = 9Xa, b\ È
a,b

a Î A ß b Î B= H� :L

Here is an example of an elementary property that follows from these definitions and axioms:

A = Æ � Ø $
x

x Î A.

When we use formulae in this knowledge base, we just reference it by the label (set theory).

� Definition: Equivalences

is|equivalence@R, XD�í
loooooom

n
oooooo

is|relation@R, XD
is|reflexive@R, XD
is|symmetric@RD
is|transitive@RD

His|equivalence :L

is|relation@R, XD� HR Í X �XL His|relation :L

is|reflexive@R, XD� "
xÎX
Xx, x\ Î R His|reflexive :L

is|symmetric@RD� "
x,y
HXx, y\ Î R Þ Xy, x\ Î RL His|symmetric :L

is|transitive@RD� "
x,y,z
HXx, y\ Î Rß Xy, z\ Î R Þ Xx, z\ Î RL His|transitive :L

� Definition: Partitions

is|partition@P, XD�í
loooooom

n
oooooo

is|subset|set@P, XD
are|all|nonempty@PD
are|all|disjoint@PD
covers@P, XD

His|partition :L

is|subset|set@P, XD� "
pÎP

p Í X His|subset|set :L

are|all|nonempty@PD� "
pÎP

p ¹ Æ Hare|all|nonempty :L

are|all|disjoint@PD� "
p,qÎP
Hp ¹ q Þ pÝ q = ÆL Hare|all|disjoint :L

covers@P, XD� HU@PD � XL Hcovers :L
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� Definition: Sets Determined by a Relation

sets|of|relation@R, XD = 9class@x, R, XD È
x

x Î X= Hsets|of|relation :L

class@x, R, XD = 9y Î X È
y
Xy, x\ Î R= Hclass :L

� Definition: Relation Determined by Sets

relation|of|sets@P, XD = 9Xx, y\
ÄÄÄÄÄÄÄÄÄÄ

x,yÎX

$
pÎP
Hx Î pß y Î pL= Hrelation|of|sets :L

� Theorem

We want to prove that

is|equivalence@R, XDÞ is|partition@sets|of|relation@R, XD, XD Hpartition from equivalenceL

is|partition@P, XDÞ is|equivalence@relation|of|sets@P, XD, XD Hequivalence from partitionL

is|equivalence@R, XDÞ Hrelation|of|sets@sets|of|relation@R, XD, XD = RL Hequivalence of partion of equivalenceL

is|partition@P, XDÞ Hsets|of|relation@relation|of|sets@P, XD, XD = PL Hpartition of equivalence of partitionL

� Proof of (partition from equivalence)

We take R and X arbitrary but fixed, assume

is|equivalence@R, XD

and show

is|partition@sets|of|relation@R, XD, XD.

For proving this, by (is|partition:), we have to prove

is|subset|set@P, XD, HSSL
are|all|nonempty@PD, HNEL
are|all|disjoint@PD, HDJL
covers@P, XD. HCVL

We only show the proof of (DJ). For the other proofs, see the exercises.

ã Proof of (DJ)

For proving (DJ), by (are|all|disjoint:), we have to prove
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"
p,qÎsets|of|relation@R,XD

Hp ¹ q Þ pÝ q = ÆL.

For this, we take p, q arbitrary but fixed, assume

p Î sets|of|relation@R, XD, Hp ÎL
q Î sets|of|relation@R, XD, Hq ÎL
p ¹ q, HNEL

and show

pÝ q = Æ.

For this, by (set theory), it suffices to prove that

Ø $
x
Hx Î pß x Î qL.

For proving this, we assume that Ξ is such that

Ξ Î p,

Ξ Î q,

and show a contradiction. In fact, we show that

p = q.

By (set theory), for this it is sufficient to show that

"
x
Hx Î p � x Î qL.

For this, we take Η arbitrary but fixed, assume

Η Î p

and show

Η Î q,

and we assume

Η Î q

and show

Η Î p.

We only show one direction. The other direction is analogous.

Now, from (pÎ) and (qÎ), by (sets|of|relation:), we know that 

p Î 9class@x, R, XD È
x

x Î X=,

q Î 9class@x, R, XD È
x

x Î X=.
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Because of this we can take Α and Β such that

p = class@Α, R, XD,

q = class@Β, R, XD.

Now, from this and from ΞÎp, by (class:), we know that

XΞ, Α\ Î R,

XΞ, Β\ Î R,

XΗ, Α\ Î R.

Hence, from is|equivalence[R,X],

XΗ, Β\ Î R,

i.e., by (class:),

Η Î class@Β, R, XD,

i.e.

Η Î q.

� Proof of (partition from equivalence) with Comments on the Proof Techniques

We take R and X arbitrary but fixed, assume

is|equivalence@R, XD

and show

is|partition@sets|of|relation@R, XD, XD.

(Note that R and X are now considered to be "new" constants.)

For proving this, by (is|partition:), we have to prove

is|subset|set@P, XD, HSSL
are|all|nonempty@PD, HNEL
are|all|disjoint@PD, HDJL
covers@P, XD. HCVL

We only show the proof of (DJ). For the other proofs, see the exercises.

ã Proof of (DJ)

For proving (DJ), by (are|all|disjoint:), we have to prove

"
p,qÎsets|of|relation@R,XD

Hp ¹ q Þ pÝ q = ÆL.
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For this, we take p, q arbitrary but fixed, assume

p Î sets|of|relation@R, XD, Hp ÎL
q Î sets|of|relation@R, XD, Hq ÎL
p ¹ q, HNEL

and show

pÝ q = Æ.

For this, by (set theory), it suffices to prove that

Ø $
x
Hx Î pß x Î qL.

(For proving Ø $
x
... we assume $

x
... and show a contradiction. By the assumption $

x
..., we are allowed to take an object, call

it Ξ and assume that ... holds for Ξ.)

For proving this, we assume that Ξ is such that

Ξ Î p,

Ξ Î q,

and show a contradiction. In fact, we show that

p = q.

By (set theory), for this it is sufficient to show that

"
x
Hx Î p � x Î qL.

For this, we take Η arbitrary but fixed, assume

Η Î p

and show

Η Î q,

and we assume

Η Î q

and show

Η Î p.

We only show one direction. The other direction is analogous.

Now, from (pÎ) and (qÎ), by (sets|of|relation:), we know that 

p Î 9class@x, R, XD È
x

x Î X=,
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q Î 9class@x, R, XD È
x

x Î X=.

(p Î 9class@x, R, XD È
x

x Î X= means that 

p Î 9t Ë $
x
Ht = class@x, R, XD ß x Î XL=

and this means that p has the property characterizing this set, i.e.

$
x
Hp = class@x, R, XD ß x Î XL.

Hence, we are allowed to take an object, call it Α and assume that

p = class@Α, R, XD,

Α Î X.

)

Because of this we can take Α and Β such that

p = class@Α, R, XD,

q = class@Β, R, XD.

Now, from this and from ΞÎp, by (class:), we know that

XΞ, Α\ Î R,

XΞ, Β\ Î R,

XΗ, Α\ Î R.

Hence, from is|equivalence[R,X],

XΗ, Β\ Î R,

i.e., by (class:),

Η Î class@Β, R, XD,

i.e.

Η Î q.

(Here, we may further detail the steps that lead from

XΞ, Α\ Î R,

XΞ, Β\ Î R,

XΗ, Α\ Î R,

to
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XΗ, Β\ Î R.

In fact, from 

is|equivalence@R, XD,

by (is|equivalence:), we know that

is|symmetric@R, XD,

is|transitive@R, XD,

and, hence, by (is|symmetric:) and (is|transitive:),

"
x,y
HXx, y\ Î R Þ Xy, x\ Î RL H1L

"
x,y,z
HXx, y\ Î Rß Xy, z\ Î R Þ Xx, z\ Î RL. H2L

Now, from XΞ,Α\ÎR, by (1),

XΑ, Ξ\ Î R.

Now, from XΗ,Α\ÎR and XΑ,Ξ\ÎR, by (2),

XΗ, Ξ\ Î R.

And now, from XΗ,Ξ\ÎR and XΞ,Β\ÎR, again by (2),

XΗ, Β\ Î R.

)

à Structuring Proofs

� Unfolding Definitions

As shown in the above examples, proofs proceed by "unfolding" the definitions of notions occuring in the goal formula and
in the formulae in the knowledge base. 

In  many  proofs,  hardly  any  difficult  idea  is  needed  except  unfolding  the  definitions  and  playing  with  the  constants
introduced  in  the  various  stages  of  the  proofs  for  combining  suitable  terms  that  fulfill  the  conditions  specified  in
existentially quantified formulae.

However,  proofs  of  theorems may  become quite  long.  Also,  one  uses  to  reference  long  formulae  occurring  in  proofs  by
labels.  Thus,  long  proofs  may  become  hard  to  read  because  one  tends  to  lose  the  overview  and  it  is  sometimes  quite
annoying  to  jump  back  and  forth  a  couple  of  pages  for  finding  the  formulae  referenced  in  a  given  proof  step.  Also,
understanding proofs has two very different aspects both of which are equally important:

é understanding the main idea of a proof independent of formal details,

é being able to check the correctness of each step of the proof and the completeness of the proof.
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Therefore it  is  very  important  to  develop techniques for  structuring proofs  with  the goal  to  invent  and understand proofs
more easily.

We discuss three techniques for structuring proofs:

é develop the key ideas of proofs in examples, in particular graphic illustrations,

é theory exploration instead of isolated theorem proving,

é introducing only one quantifier at a time,

é "backward proof presentation" versus "forward proof presentation".
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