Logic 1
First-Order Logic

Mădălina Erașcu Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

November 21, 2013
Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and $t_1, ..., t_n$ are terms then $f[t_1, ..., t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and $t_1, ..., t_n$ are terms then $P[t_1, ..., t_n]$ is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
Syntax

The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and $t_1, ..., t_n$ are terms then $f[t_1, ..., t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and $t_1, ..., t_n$ are terms then $P[t_1, ..., t_n]$ is an atom.

An atom is \top, \bot, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
Syntax

The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and $t_1, ..., t_n$ are terms then $f[t_1, ..., t_n]$ is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and $t_1, ..., t_n$ are terms then $P[t_1, ..., t_n]$ is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
Syntax

The language of FOL consists in terms and formulas. **Terms** are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and $t_1, ..., t_n$ are terms then $f[t_1, ..., t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and $t_1, ..., t_n$ are terms then $P[t_1, ..., t_n]$ is an atom.

An **atom** is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.

A **literal** is an atom or its negation.
The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_1, \ldots, t_n are terms then $f[t_1, \ldots, t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_1, \ldots, t_n are terms then $P[t_1, \ldots, t_n]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If \(f \) is an \(n \)-place function symbol, and \(t_1, \ldots, t_n \) are terms then \(f[t_1, \ldots, t_n] \) is a term.
4. All terms are generated by applying the above rules.

If \(P \) is an \(n \)-place predicate symbol and \(t_1, \ldots, t_n \) are terms then \(P[t_1, \ldots, t_n] \) is an atom.

An atom is \(\top, \bot \), or an \(n \)-ary predicate applied to \(n \) terms.

A literal is an atom or its negation.
Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_1, \ldots, t_n are terms then $f[t_1, \ldots, t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_1, \ldots, t_n are terms then $P[t_1, \ldots, t_n]$ is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and $t_1, ..., t_n$ are terms then $f[t_1, ..., t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and $t_1, ..., t_n$ are terms then $P[t_1, ..., t_n]$ is an atom.

An atom is \top, \bot, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
Syntax

The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_1, \ldots, t_n are terms then $f[t_1, \ldots, t_n]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_1, \ldots, t_n are terms then $P[t_1, \ldots, t_n]$ is an atom.

An atom is \top, \bot, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x \, x + 1 \geq x$
2. $\neg \left(\exists x \, E[0, f[x]] \right)$
3. $\forall \exists x \exists y \left(E[y, f[x]] \land \forall z \left(E[z, f[x]] \implies E[y, z] \right) \right)$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x \; x + 1 \geq x$
2. $\neg \left(\exists x \; E[0, f[x]] \right)$
3. $\forall x \exists y \left(E[y, f[x]] \land \forall z \left(E[z, f[x]] \implies E[y, z] \right) \right)$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x (x + 1 \geq x)$

2. $\neg (\exists x E[0, f[x]])$

3. $\forall x \exists y \left(E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z]) \right)$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x \ x + 1 \geq x$
2. $\neg (\exists x \ E[0, f[x]])$
3. $\forall \exists (\forall y (E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z])))$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the below

1. $\forall x x + 1 \geq x$
2. $\neg \left(\exists x E[0, f(x)] \right)$
3. $\forall x \exists y \left(E[y, f(x)] \land \forall z \left(E[z, f(x)] \implies E[y, z] \right) \right)$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If \(F \) and \(G \) are formulas then \(\neg F, F \lor G, F \land G, F \implies G \), and \(F \iff G \) are formulas.
3. If \(F \) is a formula and \(x \) is a variable, then \(\forall x F \) and \(\exists x F \) are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable \(x \) is bound in the formula \(F \) if there is an occurrence of \(x \) in the scope of a binding quantifier \(\forall x \) or \(\exists x \).

A variable \(x \) is free in the formula \(F \) if there is an occurrence of \(x \) that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the below

1. \(\forall x x + 1 \geq x \)
2. \(\neg \left(\exists x E[0, f[x]] \right) \)
3. \(\forall x \exists y \left(E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z]) \right) \)
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x (x + 1 \geq x)$
2. $\neg (\exists x E[0, f[x]])$
3. $\forall x \exists y (E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z]))$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x x + 1 \geq x$
2. $\neg (\exists x E[0, f[x]])$
3. $\forall x \exists y (E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z]))$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x \quad x + 1 \geq x$

2. $\neg (\exists x \ E[0, f[x]])$

3. $\forall x \exists y (E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z]))$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x x + 1 \geq x$
2. $\neg \left(\exists x E[0, f[x]] \right)$
3. $\forall x \exists y \left(E[y, f[x]] \land \forall z (E[z, f[x]] \implies E[y, z]) \right)$
Syntax (cont’d)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F$, $F \lor G$, $F \land G$, $F \implies G$, and $F \iff G$ are formulas.
3. If F is a formula and x is a variable, then $\forall x F$ and $\exists x F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is **bound** in the formula F if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$.

A variable x is **free** in the formula F if there is an occurrence of x that is not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\forall x \ x + 1 \geq x$
2. $\neg \left(\exists x \ E[x, f[x]] \right)$
3. $\forall x \exists y \left(E[y, f[x]] \land \forall z \left(E[z, f[x]] \implies E[y, z] \right) \right)$
An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^n to D
- to each predicate symbol we assign a mapping from D^n to $\{T, F\}$.

Then the semantics of the formula F is a function $f : \mathcal{I} \rightarrow \{T, F\}$, where $I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.
An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^n to D
- to each predicate symbol we assign a mapping from D^n to $\{T, F\}$.

Then the semantics of the formula F is a function $f : \mathcal{I} \rightarrow \{T, F\}$, where $I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.
Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^n to D
- to each predicate symbol we assign a mapping from D^n to \{T, F\}.

Then the semantics of the formula F is a function $f : I \to \{T, F\}$, where $I \in I$ and I is the set of all interpretations of the formula F.

An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^n to D
- to each predicate symbol we assign a mapping from D^n to $\{T, F\}$.

Then the semantics of the formula F is a function $f : \mathcal{I} \rightarrow \{T, F\}$, where $I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.
An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^n to D
- to each predicate symbol we assign a mapping from D^n to \{T, F\}.

Then the semantics of the formula F is a function $f : \mathcal{I} \rightarrow \{T, F\}$, where $I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics
Example: Find the truth value of the formulas:

- \(F_1 \leftarrow \iff \forall \forall x \leq y, \) where \(I : \left\{ \begin{array}{l} D = \{0, 1\} \\
\leq_I \rightarrow \leq_{\mathbb{Z}} \end{array} \right. \)

- \(F_2 \leftarrow \iff \forall \exists x + y > c, \) where \(I : \left\{ \begin{array}{l} D = \{0, 1\} \\
c_I = 0 \\
+I \rightarrow +\mathbb{Z} \\
>_{I} \rightarrow >_{\mathbb{Z}} \end{array} \right. \)

- \(F_3 \leftarrow \iff \forall (P[x] \implies Q[f[x], a]), \) where

\[
\begin{align*}
I : & \left\{ \begin{array}{l} D = \{1, 2\} \\
a_I = 1 \\
f_I : D \rightarrow D \\
P_I : D \rightarrow \{\mathbb{T}, \mathbb{F}\} \\
Q_I : D^2 \rightarrow \{\mathbb{T}, \mathbb{F}\} \\
\end{array} \right. \\
& \left\{ \begin{array}{l} f_I[1] = 1 \\
f_I[2] = 1 \\
P_I[1] = \mathbb{T} \\
P_I[2] = \mathbb{F} \\
Q_I[1, 1] = \mathbb{T} \\
Q_I[1, 2] = \mathbb{F} \\
Q_I[2, 1] = \mathbb{F} \\
Q_I[2, 2] = \mathbb{T} \end{array} \right. \end{align*}
\]
Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \top in I.

A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \bot in I.

A formula F is valid iff for all interpretations I, F is evaluated to \top in I.

A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \bot in I.

A formula G is a logical consequence of formulas F_1, F_2, ..., F_n iff for every interpretation I, if $F_1 \land F_2 \land \ldots \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

$\forall x P[x] \land \exists y \neg P[y]$ is inconsistent.
A formula F is **satisfiable (consistent)** iff there exists an interpretation I such that F is evaluated to \top in I.

A formula F is **unsatisfiable (inconsistent)** iff for all interpretations I, F is evaluated to \bot in I.

A formula F is **valid** iff for all interpretations I, F is evaluated to \top in I.

A formula F is **invalid** iff there exists an interpretation I, such that F is evaluated to \bot in I.

A formula G is a **logical consequence** of formulas F_1, F_2, ..., F_n iff for every interpretation I, if $F_1 \land F_2 \land \ldots \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

$\forall x P[x] \land \exists y \neg P[y]$ is inconsistent.
A formula F is **satisfiable (consistent)** iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.

A formula F is **unsatisfiable (inconsistent)** iff for all interpretations I, F is evaluated to \mathbb{F} in I.

A formula F is **valid** iff for all interpretations I, F is evaluated to \mathbb{T} in I.

A formula F is **invalid** iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in I.

A formula G is a **logical consequence** of formulas F_1, F_2, ..., F_n iff for every interpretation I, if $F_1 \land F_2 \land ... \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

$\forall x P[x] \land \exists y \neg P[y]$ is inconsistent.
A formula F is **satisfiable (consistent)** iff there exists an interpretation I such that F is evaluated to \top in I.

A formula F is **unsatisfiable (inconsistent)** iff for all interpretations I, F is evaluated to \bot in I.

A formula F is **valid** iff for all interpretations I, F is evaluated to \top in I.

A formula F is **invalid** iff there exists an interpretation I, such that F is evaluated to \bot in I.

A formula G is a **logical consequence** of formulas F_1, F_2, \ldots, F_n iff for every interpretation I, if $F_1 \land F_2 \land \ldots \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

$\forall x P[x] \land \exists y \neg P[y]$ is inconsistent.
A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.

A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.

A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in I.

A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in I.

A formula G is a logical consequence of formulas $F_1, F_2, ..., F_n$ iff for every interpretation I, if $F_1 \land F_2 \land ... \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

$\forall x P[x] \land \exists y \neg P[y]$ is inconsistent.
(Un)Satisfiability & (In)Validity

A formula F is **satisfiable (consistent)** iff there exists an interpretation I such that F is evaluated to \top in I.

A formula F is **unsatisfiable (inconsistent)** iff for all interpretations I, F is evaluated to \bot in I.

A formula F is **valid** iff for all interpretations I, F is evaluated to \top in I.

A formula F is **invalid** iff there exists an interpretation I, such that F is evaluated to \bot in I.

A formula G is a **logical consequence** of formulas F_1, F_2, \ldots, F_n iff for every interpretation I, if $F_1 \land F_2 \land \ldots \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

\[
\forall x P[x] \land \exists y \neg P[y]
\]

is inconsistent.
A formula F is **satisfiable (consistent)** iff there exists an interpretation I such that F is evaluated to \top in I.

A formula F is **unsatisfiable (inconsistent)** iff for all interpretations I, F is evaluated to \bot in I.

A formula F is **valid** iff for all interpretations I, F is evaluated to \top in I.

A formula F is **invalid** iff there exists an interpretation I, such that F is evaluated to \bot in I.

A formula G is a **logical consequence** of formulas F_1, F_2, ..., F_n iff for every interpretation I, if $F_1 \land F_2 \land \ldots \land F_n$ is true in I, G is also true in I.

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

$\forall x P[x] \land \exists y \neg P[y]$ is inconsistent.
Outline

Syntax

Semantics

(Un)satisfiability & (In)validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
Equivalences of Formulas

Two formulas F and G are equivalent iff the truth values of F and G are the same under any interpretation.

\[
\begin{align*}
F \iff G & \equiv (F \Rightarrow G) \land (G \Rightarrow F) \\
F \Rightarrow G & \equiv \neg F \lor G \\
F \lor G & \equiv G \lor F \\
(F \lor G) \lor H & \equiv F \lor (G \lor H) \\
F \lor (G \land H) & \equiv (F \lor G) \land (F \lor H) \\
F \lor T & \equiv T \\
F \lor F & \equiv F \\
F \lor \neg F & \equiv T \\
\neg (\neg F) & \equiv F \\
\neg (F \lor G) & \equiv \neg F \land \neg G \\
(Qx)F[x] \lor G & \equiv (Qx)(F[x] \lor G) \\
\neg \forall F[x] & \equiv \exists \neg F[x] \\
\forall F[x] \lor \forall G[x] & \not\equiv \forall (F[x] \lor G[x]) \\
\exists F[x] \lor \exists G[x] & \equiv \exists (F[x] \lor G[x]) \\
\forall F[x] \land \forall G[x] & \equiv \forall (F[x] \land G[x]) \\
\exists F[x] \land \exists G[x] & \not\equiv \exists (F[x] \land G[x])
\end{align*}
\]
Equivalences of Formulas

F \iff G \equiv $(F \Rightarrow G) \land (G \Rightarrow F)$	$F \land G$ \equiv $G \land F$
$F \Rightarrow G$ \equiv $\neg F \lor G$	$(F \land G) \land H$ \equiv $F \land (G \land H)$
$F \lor G$ \equiv $G \lor F$	$F \land (G \lor H)$ \equiv $(F \land G) \lor (F \land H)$
$(F \lor G) \lor H$ \equiv $F \lor (G \lor H)$	$F \lor F$ \equiv F
$F \lor (G \land H)$ \equiv $(F \lor G) \land (F \lor H)$	$F \lor T$ \equiv T
$F \lor \top$ \equiv \top	$F \land T$ \equiv F
$F \lor \bot$ \equiv \bot	$F \land \bot$ \equiv F
$\neg (\neg F)$ \equiv F	$\neg (F \land G)$ \equiv $\neg F \land \neg G$
$\neg (F \lor G)$ \equiv $\neg F \land \neg G$	$(Qx) F[x] \land G$ \equiv $(Qx) (F[x] \land G)$
$(Qx) F[x] \lor G$ \equiv $(Qx) (F[x] \lor G)$	$\neg (\exists x) F[x]$ \equiv $\forall \neg F[x]$
$\forall F[x] \equiv \exists \neg F[x]$	$\forall F[x] \land \forall G[x]$ \equiv $\forall (F[x] \land G[x])$
$\forall F[x] \lor \forall G[x]$ $\not\equiv$ $\forall (F[x] \lor G[x])$	$\exists F[x] \land \exists G[x]$ \equiv $\exists (F[x] \land G[x])$
$\exists F[x] \lor \exists G[x]$ \equiv $\exists (F[x] \lor G[x])$	$\exists F[x] \land \exists G[x]$ $\not\equiv$ $\exists (F[x] \land G[x])$

Which implications do not hold in the $\not\equiv$ above?
Equivalences of Formulas

<table>
<thead>
<tr>
<th>Equivalence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F \iff G \equiv (F \Rightarrow G) \land (G \Rightarrow F))</td>
<td>(F \Rightarrow G \equiv \neg F \lor G)</td>
</tr>
<tr>
<td>(F \lor G \equiv G \lor F)</td>
<td>(F \lor (G \land H) \equiv (F \lor G) \land (F \lor H))</td>
</tr>
<tr>
<td>((F \lor G) \lor H \equiv F \lor (G \lor H))</td>
<td>(F \lor T \equiv T)</td>
</tr>
<tr>
<td>(F \lor \neg F \equiv T)</td>
<td>(F \lor F \equiv F)</td>
</tr>
<tr>
<td>(\neg (\neg F) \equiv F)</td>
<td>(\neg (F \lor G) \equiv \neg F \land \neg G)</td>
</tr>
<tr>
<td>((Qx)F[x] \lor G \equiv (Qx)(F[x] \lor G))</td>
<td>((Qx)F[x] \lor G \equiv (Qx)(F[x] \land G))</td>
</tr>
<tr>
<td>(\neg \forall F[x] \equiv \exists \neg F[x])</td>
<td>(\neg (\exists x)F[x] \equiv \forall \neg F[x])</td>
</tr>
<tr>
<td>(\forall F[x] \lor \forall G[x] \neq \forall (F[x] \lor G[x]))</td>
<td>(\forall F[x] \land \forall G[x] \equiv \forall (F[x] \land G[x]))</td>
</tr>
<tr>
<td>(\exists F[x] \lor \exists G[x] \equiv \exists (F[x] \lor G[x]))</td>
<td>(\exists F[x] \land \exists G[x] \neq \exists (F[x] \land G[x]))</td>
</tr>
</tbody>
</table>

Which implications do not hold in the \(\neq \) above?
Equivalences of Formulas

<table>
<thead>
<tr>
<th>$F \iff G$</th>
<th>$\equiv (F \implies G) \land (G \implies F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F \implies G$</td>
<td>$\equiv \neg F \lor G$</td>
</tr>
<tr>
<td>$F \lor G$</td>
<td>$\equiv G \lor F$</td>
</tr>
<tr>
<td>$(F \lor G) \lor H$</td>
<td>$\equiv F \lor (G \lor H)$</td>
</tr>
<tr>
<td>$F \lor (G \land H)$</td>
<td>$\equiv (F \lor G) \land (F \lor H)$</td>
</tr>
<tr>
<td>$F \lor \top$</td>
<td>$\equiv \top$</td>
</tr>
<tr>
<td>$F \lor \bot$</td>
<td>$\equiv \bot$</td>
</tr>
<tr>
<td>$\neg (\neg F)$</td>
<td>$\equiv F$</td>
</tr>
<tr>
<td>$\neg (F \lor G)$</td>
<td>$\equiv \neg F \land \neg G$</td>
</tr>
<tr>
<td>$(Qx)F[x] \lor G$</td>
<td>$\equiv (Qx)(F[x] \lor G)$</td>
</tr>
<tr>
<td>$\neg \forall F[x]$</td>
<td>$\equiv \exists \neg F[x]$</td>
</tr>
<tr>
<td>$\forall F[x] \lor \forall G[x]$</td>
<td>$\not\equiv \forall (F[x] \lor G[x])$</td>
</tr>
<tr>
<td>$\exists F[x] \lor \exists G[x]$</td>
<td>$\equiv \exists (F[x] \lor G[x])$</td>
</tr>
</tbody>
</table>

$F \land G$	$\equiv G \land F$
$(F \land G) \land H$	$\equiv F \land (G \land H)$
$F \land (G \lor H)$	$\equiv (F \land G) \lor (F \land H)$
$F \land \top$	$\equiv F$
$F \land \bot$	$\equiv \bot$
$\neg (F \land G)$	$\equiv \neg F \lor \neg G$
$(Qx)F[x] \land G$	$\equiv (Qx)(F[x] \land G)$
$\neg (\exists x)F[x]$	$\equiv \forall \neg F[x]$
$\forall F[x] \land \forall G[x]$	$\equiv \forall (F[x] \land G[x])$
$\exists F[x] \land \exists G[x]$	$\equiv \exists (F[x] \land G[x])$

Which implications do not hold in the $\not\equiv$ above?
Equivalences of Formulas (cont’d)

Note that

\[\forall x F[x] \lor \forall x G[x] \equiv \forall x F[x] \lor \forall y G[y] \equiv \forall x F[x] \lor G[y] \]

\[\exists x F[x] \land \exists x G[x] \equiv \exists x F[x] \land \exists y G[y] \equiv \exists x F[x] \land G[y] \]
Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $(Q_1x_1)\ldots(Q_nx_n)M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall_{x_1,\ldots,x_n}M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $(Q_1 x_1) \ldots (Q_n x_n) M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall_{x_1, \ldots, x_n} M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $(Q_1x_1)...(Q_nx_n) M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall_{x_1,...,x_n} M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\forall x_1, \ldots, x_n M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall x_1, \ldots, x_n M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only logical connectives and that negations appear only in literals.

A formula \(F \) in FOL is said to be in prenex normal form (PNF) iff the formula is in the form \((Q_1x_1)...(Q_nx_n) M\), where \(Q_i \in \{\forall, \exists\} \) and \(M \) is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form \(\forall_{x_1,...,x_n} M \), where \(M \) is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $(Q_1x_1)...(Q_nx_n)M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall_{x_1,\ldots,x_n}M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $(Q_1 x_1) \ldots (Q_n x_n) M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall x_1, \ldots, x_n M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_1 x_1 \right) \ldots \left(Q_n x_n \right) M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall_{x_1, \ldots, x_n} M$, where M is a quantifier-free formula in CNF.
Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \land, and \lor to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $(Q_1x_1)...(Q_nx_n) M$, where $Q_i \in \{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall_{x_1,...,x_n} M$, where M is a quantifier-free formula in CNF.
Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

\[
\left(\forall x P[x] \right) \Rightarrow Q \equiv \exists x (P[x] \Rightarrow Q).
\]

2. Bring the following formulas into Skolem standard form

\[
\forall x \exists y, z \left(\neg P[x, y] \land Q[x, z] \right) \lor R[x, y, z]
\]

\[
\forall x, y \left(\exists z P[x, z] \land P[y, z] \right) \Rightarrow \exists u Q[x, y, u]
\]
Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

\[\left(\forall x P[x] \right) \Rightarrow Q \equiv \exists x (P[x] \Rightarrow Q). \]

2. Bring the following formulas into Skolem standard form

\[\forall x \exists y, z (\neg P[x, y] \land Q[x, z]) \lor R[x, y, z] \]

\[\forall x, y \left(\exists z P[x, z] \land P[y, z] \right) \Rightarrow \exists u Q[x, y, u] \]
Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

\[
\left(\forall x \, P[x] \right) \Rightarrow Q \equiv \exists x \, (P[x] \Rightarrow Q).
\]

2. Bring the following formulas into Skolem standard form

\[
\forall x \, \exists y, z \, ((\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
\]

\[
\forall x, y \left(\exists z \, P[x, z] \land P[y, z] \right) \Rightarrow \exists u \, Q[x, y, u]
\]
Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

\[
\left(\forall \ P[x] \right) \Rightarrow Q \equiv \exists \ (P[x] \Rightarrow Q).
\]

2. Bring the following formulas into Skolem standard form

\[
\forall \ (\exists \ z \ (\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
\]

\[
\forall \ (\exists \ z \ (\exists P[x, z] \land P[y, z]) \Rightarrow \exists \ Q[x, y, u])
\]
Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

\[
(\forall P[x]) \Rightarrow Q \equiv \exists_x (P[x] \Rightarrow Q).
\]

2. Bring the following formulas into Skolem standard form

\[
\forall x, \exists y, z ((\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
\]

\[
\forall x, y \left(\exists z (P[x, z] \land P[y, z]) \Rightarrow \exists u Q[x, y, u] \right)
\]
Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
Formula Clausification

A **clause** is a disjunction of literals.

Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$

A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.

Example: Let

$$\forall \exists (\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])$$

The standard form of the formula above, that is

$$\forall \neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))$$

can be represented by the following set of clauses

$$\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.
Formula Clausification

A clause is a disjunction of literals.

Examples: \(\neg P[x] \lor Q[y, f[x]], P[x] \)

A set of clauses \(S \) is regarded as a conjunction of all clauses in \(S \), where every variable in \(S \) is considered governed by a universal quantifier.

Example: Let

\[
\forall x \exists y, z ((\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
\]

The standard form of the formula above, that is

\[
\forall x ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))
\]

can be represented by the following set of clauses

\[
\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}
\]

Note that, if \(S \) is a set of clauses that represents a standard form of a formula \(F \), then \(F \) is inconsistent iff \(S \) is inconsistent.
Formula Clausification

A **clause** is a disjunction of literals.

Examples: \(\neg P[x] \lor Q[y, f[x]], P[x] \)

A **set of clauses** \(S \) is regarded as a conjunction of all clauses in \(S \), where every variable in \(S \) is considered governed by a universal quantifier.

Example: Let

\[
\forall \exists \exists_{x, y, z} ((\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
\]

The standard form of the formula above, that is

\[
\forall_{x} ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))
\]

can be represented by the following set of clauses

\[
\{ \neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]] \}
\]

Note that, if \(S \) is a set of clauses that represents a standard form of a formula \(F \), then \(F \) is inconsistent iff \(S \) is inconsistent.
Formula Clausification

A clause is a disjunction of literals.

Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$.

A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.

Example: Let

$$
\forall x \exists y, z ((\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
$$

The standard form of the formula above, that is

$$
\forall x ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))
$$

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.
Formula Clausification

A clause is a disjunction of literals.

Examples: \(\neg P[x] \lor Q[y, f[x]], P[x] \)

A set of clauses \(S \) is regarded as a conjunction of all clauses in \(S \), where every variable in \(S \) is considered governed by a universal quantifier.

Example: Let

\[
\forall x \exists y, z ((\neg P[x, y] \land Q[x, z]) \lor R[x, y, z])
\]

The standard form of the formula above, that is

\[
\forall x ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))
\]

can be represented by the following set of clauses

\[
\{ \neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]] \}
\]

Note that, if \(S \) is a set of clauses that represents a standard form of a formula \(F \), then \(F \) is inconsistent iff \(S \) is inconsistent.
Formulas Clausification (cont’d)

Example:
Transform the formulas F_1, F_2, F_3, F_4, and $\neg G$ into a set of clauses, where

F_1:
$$\forall_{x,y} \exists_z P[x, y, z]$$
$$\forall_{x,y,z,u,v,w} \left((P[x, y, u] \land P[y, z, v] \land P[u, z, w]) \Rightarrow P[x, v, w] \right)$$

F_2:
$$\forall_{x,y,z,u,v,w} \left(P[x, y, u] \land (P[y, z, v] \land P[x, v, w]) \Rightarrow P[u, z, w] \right)$$

F_3:
$$\forall_{x} P[x, e, x] \land \forall_{x} P[e, x, x]$$

F_4:
$$\forall_{x} P[x, i[x], e] \land \forall_{x} P[i[x], x, e]$$

G:
$$\left(\forall_{x} P[x, x, e] \right) \Rightarrow \forall_{u,v,w} \left(P[u, v, w] \Rightarrow P[v, u, w] \right)$$
Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution
Substitution

Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]
Substitution

Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]

\[C_2 : \quad \neg P[f[x]] \lor R[x] \]
Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[a] \) in \(C_1 \), \(x \rightarrow a \) in \(C_2 \).
Substitution

Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \to f[a] \) in \(C_1 \), \(x \to a \) in \(C_2 \).

We have

\[C'_1 : \quad P[f[a]] \lor Q[f[a]] \]
\[C'_2 : \quad \neg P[f[a]] \lor R[a] \]
Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \to f[a] \) in \(C_1 \), \(x \to a \) in \(C_2 \).

We have

\[C_1' : \quad P[f[a]] \lor Q[f[a]] \]
\[C_2' : \quad \neg P[f[a]] \lor R[a] \]

\(C_1' \) and \(C_2' \) are ground instances.
Substitution

Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[a] \) in \(C_1 \), \(x \rightarrow a \) in \(C_2 \).

We have

\[C'_1 : \quad P[f[a]] \lor Q[f[a]] \]
\[C'_2 : \quad \neg P[f[a]] \lor R[a] \]

\(C'_1 \) and \(C'_2 \) are ground instances.

A resolvent of \(C'_1 \) and \(C'_2 \) is

\[C'_3 : \quad Q[f[a]] \lor R[a] \]
Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[x] \) in \(C_1 \). We have

\[C_1^* : \quad P[f[x]] \lor Q[f[x]] \]

\(C_1^* \) is an instance of \(C_1 \).

A resolvent of

\[C_2 : \quad \neg P[f[x]] \lor R[x] \]
\[C_1^* : \quad P[f[x]] \lor Q[f[x]] \]

is

\[C_3 : \quad Q[f[x]] \lor R[x] \]

\(C_3' \) is an instance of \(C_3 \). \(C_3 \) is the most general clause.
Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[x] \) in \(C_1 \). We have

\[C^*_1 : \quad P[f[x]] \lor Q[f[x]] \]

\(C^*_1 \) is an instance of \(C_1 \).

A resolvent of

\[C_2 : \quad \neg P[f[x]] \lor R[x] \]
\[C^*_1 : \quad P[f[x]] \lor Q[f[x]] \]

is

\[C_3 : \quad Q[f[x]] \lor R[x] \]

\(C'_3 \) is an instance of \(C_3 \). \(C_3 \) is the most general clause.
Substitution

Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[x] \) in \(C_1 \). We have

\[C_1^* : \quad P[f[x]] \lor Q[f[x]] \]

\(C_1^* \) is an *instance* of \(C_1 \).

A resolvent of

\[C_2 : \quad \neg P[f[x]] \lor R[x] \]
\[C_1^* : \quad P[f[x]] \lor Q[f[x]] \]

is

\[C_3 : \quad Q[f[x]] \lor R[x] \]

\(C_3' \) is an instance of \(C_3 \). \(C_3 \) is the *most general clause*.
Example: Let

\[C_1 : P[x] \lor Q[x] \]
\[C_2 : \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[x] \) in \(C_1 \). We have

\[C_1^* : P[f[x]] \lor Q[f[x]] \]

\(C_1^* \) is an instance of \(C_1 \).

A resolvent of

\[C_2 : \neg P[f[x]] \lor R[x] \]
\[C_1^* : P[f[x]] \lor Q[f[x]] \]

is

\[C_3 : Q[f[x]] \lor R[x] \]

\(C_3^* \) is an instance of \(C_3 \). \(C_3 \) is the most general clause.
Substitution

Example: Let

\[C_1 : \quad P[x] \lor Q[x] \]
\[C_2 : \quad \neg P[f[x]] \lor R[x] \]

Let \(x \rightarrow f[x] \) in \(C_1 \). We have

\[C_1^* : \quad P[f[x]] \lor Q[f[x]] \]

\(C_1^* \) is an instance of \(C_1 \).

A resolvent of

\[C_2 : \quad \neg P[f[x]] \lor R[x] \]
\[C_1^* : \quad P[f[x]] \lor Q[f[x]] \]

is

\[C_3 : \quad Q[f[x]] \lor R[x] \]

\(C_3' \) is an instance of \(C_3 \). \(C_3 \) is the most general clause.
Substitution (cont’d)

A substitution σ is a finite set of the form $\{v_1 \rightarrow t_1, \ldots, v_n \rightarrow t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i.

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i.

Example: Let $\sigma = \{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E = f[z, a, g[x], y]$. Then $E\sigma = f[h[a, y], a, g[z], y]$.
A substitution \(\sigma \) is a finite set of the form \(\{ v_1 \rightarrow t_1, \ldots, v_n \rightarrow t_n \} \) where every \(t_i \) is a term different from \(v_i \) and no two elements in the set have the same variable \(v_i \).

Let \(\sigma \) be defined as above and \(E \) be an expression. Then \(E\sigma \) is an expression obtained from \(E \) by replacing simultaneously each occurrence of \(v_i \) in \(E \) by the term \(t_i \).

Example: Let \(\sigma = \{ x \rightarrow z, z \rightarrow h[a, y] \} \) and \(E = f[z, a, g[x], y] \). Then \(E\sigma = f[h[a, y], a, g[z], y] \).
A substitution σ is a finite set of the form $\{v_1 \rightarrow t_1, ..., v_n \rightarrow t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i.

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i.

Example: Let $\sigma = \{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E = f[z, a, g[x], y]$. Then $E\sigma = f[h[a, y], a, g[z], y]$.
Let

\[\theta = \{ x_1 \rightarrow t_1, \ldots, x_n \rightarrow t_n \} \]
\[\lambda = \{ y_1 \rightarrow u_1, \ldots, y_n \rightarrow u_n \} \]

Then the composition of \(\theta \) and \(\lambda \) \((\theta \circ \lambda)\) is obtained from the set

\[\{ x_1 \rightarrow t_1 \lambda, \ldots, x_n \rightarrow t_n \lambda, y_1 \rightarrow u_1, \ldots, y_n \rightarrow u_n \} \]

by deleting any element \(x_j \rightarrow t_j \lambda \) for which \(x_j = t_j \lambda \) and any element \(y_i \rightarrow u_i \) such that \(y_i \) is among \(\{ x_1, \ldots, x_n \} \).
Substitution (cont’d)

Example 1:

\[\theta = \{ x \rightarrow f[y], y \rightarrow z \} \]
\[\lambda = \{ x \rightarrow a, y \rightarrow b, z \rightarrow y \} \]

Then

\[\theta \circ \lambda = \{ x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y \} \]
\[= \{ x \rightarrow f[b], z \rightarrow y \} \]

Example 2:

\[\theta_1 = \{ x \rightarrow a, y \rightarrow f[z], z \rightarrow y \} \]
\[\theta_2 = \{ x \rightarrow b, y \rightarrow z, z \rightarrow g[x] \} \]

Then

\[\theta_1 \circ \theta_2 = \{ x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x] \} \]
\[= \{ x \rightarrow a, y \rightarrow f[g[x]] \} \]
Substitution (cont’d)

Example 1:

\[\theta = \{x \rightarrow f[y], y \rightarrow z\} \]
\[\lambda = \{x \rightarrow a, y \rightarrow b, z \rightarrow y\} \]

Then

\[\theta \circ \lambda = \{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \]
\[= \{x \rightarrow f[b], z \rightarrow y\} \]

Example 2:

\[\theta_1 = \{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \]
\[\theta_2 = \{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\} \]

Then

\[\theta_1 \circ \theta_2 = \{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\} \]
\[= \{x \rightarrow a, y \rightarrow f[g[x]]\} \]
Substitution (cont’d)

Example 1:

\[\theta = \{x \to f[y], y \to z\} \]
\[\lambda = \{x \to a, y \to b, z \to y\} \]

Then

\[\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\} \]
\[= \{x \to f[b], z \to y\} \]

Example 2:

\[\theta_1 = \{x \to a, y \to f[z], z \to y\} \]
\[\theta_2 = \{x \to b, y \to z, z \to g[x]\} \]

Then

\[\theta_1 \circ \theta_2 = \{x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x]\} \]
\[= \{x \to a, y \to f[g[x]]\} \]
Substitution (cont’d)

Example 1:

\[\theta = \{ x \rightarrow f[y], y \rightarrow z \} \]
\[\lambda = \{ x \rightarrow a, y \rightarrow b, z \rightarrow y \} \]

Then

\[\theta \circ \lambda = \{ x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y \} \]
\[= \{ x \rightarrow f[b], z \rightarrow y \} \]

Example 2:

\[\theta_1 = \{ x \rightarrow a, y \rightarrow f[z], z \rightarrow y \} \]
\[\theta_2 = \{ x \rightarrow b, y \rightarrow z, z \rightarrow g[x] \} \]

Then

\[\theta_1 \circ \theta_2 = \{ x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x] \} \]
\[= \{ x \rightarrow a, y \rightarrow f[g[x]] \} \]