to be prepared for 07.01.2014

Exercise 45. Prove the following theorem:
If $p(y)$ is the minimal polynomial of α over the field k , then $\operatorname{norm}_{[\mathrm{k}(\alpha) / \mathrm{k}]}(h(x, \alpha))$ and $\operatorname{res}_{y}(h(x, y), p(y))$ agree up to a non-zero multiplicative constant.

Exercise 46. Consider polyomials $f, g \in k[x]$ of positive degrees m, n respectively. Let I denote the ideal in $k[x]$ generated by f, and let μ denote the multiplication map

$$
\mu: k[x] / I \longrightarrow k[x] / I, \quad h+I \mapsto g h+I .
$$

Demonstrate that $\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} \operatorname{det}(\mu)$.
Exercise 47. Consider $f, g \in k[x]$ whose roots in \bar{k} are $\zeta_{1}, \ldots, \zeta_{m}$ and $\eta_{1}, \ldots, \eta_{n}$ respectively. Prove that

$$
\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} \prod_{i=1}^{\operatorname{deg}(f)} g\left(\zeta_{i}\right)=(-1)^{\operatorname{deg}(f) \operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)} \prod_{j=1}^{\operatorname{deg}(g)} f\left(\eta_{j}\right)
$$

Exercise 48. Given homogeneous polynomials

$$
F=\sum_{i=0}^{m} a_{i} x^{m-i} y^{i} \text { and } G=\sum_{j=0}^{n} b_{j} x^{n-j} y^{j}
$$

in $k[x, y]$, their resultant $\operatorname{res}(F, G)$ is defined as the Sylvester determinant of the corresponding univariate polynomials (n rows of coefficients of $F(x, 1), \mathrm{m}$ rows of coefficients of $G(x, 1)$; notice that the 'leading coefficients' of $F(x, 1)$ and $G(x, 1)$ are allowed to be 0$)$.

Prove the following statements.

1. $\operatorname{res}(F, G)$ is an integer polynomial in the coefficients of F, G, i.e., there is a polynomial $\operatorname{Res}_{m, n} \in \mathbb{Z}\left[s_{0}, \ldots, s_{m}, t_{0}, \ldots, t_{n}\right]$ such that

$$
\operatorname{res}(F, G)=\operatorname{Res}_{m, n}\left(a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right)
$$

for all homogeneous polynomials F, G of degrees m, n.
2. $\operatorname{res}(F, G)=0$ iff F and G have a common solution in $\mathbb{P}^{1}(\bar{k})$.
3. $\operatorname{res}\left(x^{m}, y^{n}\right)=1$.

