to be prepared for 10.12.2013

Exercise 40. Use resultants to find the implicit representation, i.e. a polynomial equation just in x, y, and z of the parametrized surface

$$\begin{array}{rcl} x&=&1+s+t+st\\ y&=&2+s+st+t^2\\ z&=&s+t+s^2 \end{array}$$

Exercise 41. Let I be a unique factorization domain, $f, g \in I[x]$ with $\deg(f) > 0$, $\deg(g) > 0$. Show that there are polynomials $a, b \in I[x] \setminus 0$ such that $\operatorname{res}(f, g) = af + bg$.

Exercise 42. Consider polyomials $f, g \in k[x]$ of positive degrees m, n respectively. Let I denote the ideal in k[x] generated by f, and let μ denote the multiplication map

$$\mu \colon k[x]/I \longrightarrow k[x]/I, \quad h+I \mapsto gh+I.$$

Demonstrate that $\operatorname{res}_x(f,g) = LC(f)^{\operatorname{deg}(g)} \operatorname{det}(\mu)$.

Exercise 43. Let $f, g \in k[x]$ be polynomials whose roots are ζ_1, \ldots, ζ_m and η_1, \ldots, η_n respectively. Prove that

$$\operatorname{res}_{x}(f,g) = LC(f)^{\operatorname{deg}(g)}LC(g)^{\operatorname{deg}(f)}\prod_{i=1}^{m}\prod_{j=1}^{n}(\zeta_{i}-\eta_{j})$$

Exercise 44. $f, g \in k[x]$, divide f by g, f = qg + r with $\deg(r) < \deg(g)$. Assuming that $\deg(g) \neq 0$ show that

$$\operatorname{res}_x(f,g) = (-1)^{\operatorname{deg}(f)\operatorname{deg}(g)}LC(g)^{\operatorname{deg}(f)-\operatorname{deg}(r)}\operatorname{res}_x(g,r).$$