to be prepared for 10.12.2013

Exercise 40. Use resultants to find the implicit representation, i.e. a polynomial equation just in x, y, and z of the parametrized surface

$$
\begin{aligned}
& x=1+s+t+s t \\
& y=2+s+s t+t^{2} \\
& z=s+t+s^{2}
\end{aligned}
$$

Exercise 41. Let I be a unique factorization domain, $f, g \in I[x]$ with $\operatorname{deg}(f)>$ $0, \operatorname{deg}(g)>0$. Show that there are polynomials $a, b \in I[x] \backslash 0$ such that $\operatorname{res}(f, g)=$ $a f+b g$.
Exercise 42. Consider polyomials $f, g \in k[x]$ of positive degrees m, n respectively. Let I denote the ideal in $k[x]$ generated by f, and let μ denote the multiplication map

$$
\mu: k[x] / I \longrightarrow k[x] / I, \quad h+I \mapsto g h+I
$$

Demonstrate that $\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} \operatorname{det}(\mu)$.
Exercise 43. Let $f, g \in k[x]$ be polynomials whose roots are $\zeta_{1}, \ldots, \zeta_{m}$ and $\eta_{1}, \ldots, \eta_{n}$ respectively. Prove that

$$
\operatorname{res}_{x}(f, g)=L C(f)^{\operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\zeta_{i}-\eta_{j}\right)
$$

Exercise 44. $f, g \in k[x]$, divide f by $g, f=q g+r$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$. Assuming that $\operatorname{deg}(g) \neq 0$ show that

$$
\operatorname{res}_{x}(f, g)=(-1)^{\operatorname{deg}(f) \operatorname{deg}(g)} L C(g)^{\operatorname{deg}(f)-\operatorname{deg}(r)} \operatorname{res}_{x}(g, r)
$$

