to be prepared for 03.12.2013

Exercise 34. Let I be an ideal in $K\left[x_{1}, \ldots, x_{n}\right], F \subset K\left[x_{1}, \ldots, x_{n}\right]$ with $\langle F\rangle=$ I. Prove that F is a Gröbner basis for I iff every $h \in I$ can be written as a bounded linear combination of elements in F; i.e. there are $f_{j} \in F, h_{j} \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ such that $h=\sum_{j} h_{j} f_{j}$ with $\operatorname{lpp}\left(h_{j} f_{j}\right) \leq \operatorname{lpp}(h)$ for all j.

Exercise 35. Show that the result of applying the Euclidean Algorithm in $K[x]$ to any pair of polynomials f, g is a reduced Gröbner basis for $\langle f, g\rangle$.

Exercise 36. Consider linear polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i_{n}} x_{n} \quad 1 \leq i \leq m
$$

and let $A=\left(a_{i j}\right)$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_{1}>\cdots>x_{n}$ and show that g_{1}, \ldots, g_{r} form the reduced Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Exercise 37. Use Gröbner bases for solving over \mathbb{C} :

$$
\begin{aligned}
f_{1}(x, y, z) & =x z-x y^{2}-4 x^{2}-\frac{1}{4}=0 \\
f_{2}(x, y, z) & =y^{2} z+2 x+\frac{1}{2}=0 \\
f_{3}(x, y, z) & =x^{2} z+y^{2}+\frac{1}{2} x=0
\end{aligned}
$$

Exercise 38. Consider the polynomials

$$
\begin{aligned}
& f_{1}(x, y)=x^{2} y+x y+1 \\
& f_{2}(x, y)=y^{2}+x+y
\end{aligned}
$$

in $\mathbb{Z}_{3}[x, y]$. Compute a Gröbner basis for the ideal $\left\langle f_{1}, f_{2}\right\rangle$ w.r.t. the graduated lexicographical ordering with $x<y$. Show intermediate results.

Exercise 39. Use Gröbner bases to find the implicit representation of the parametrized surface

$$
\begin{aligned}
& x=1+s+t+s t \\
& y=2+s+s t+t^{2} \\
& z=s+t+s^{2}
\end{aligned}
$$

