to be prepared for 26.11.2013

Exercise 31. Prove the following theorem.
Let $F \subseteq k\left[x_{1}, \ldots, x_{n}\right]$. The ideal congruence modulo $\langle F\rangle$ equals the reflexive-transitive-symmetric closure of the reduction relation \longrightarrow_{F}, i.e., $\equiv\langle F\rangle=\longleftrightarrow{ }_{F}^{\star}$.

Exercise 32. Let I be an ideal in $K\left[x_{1}, \ldots, x_{n}\right], F \subset K\left[x_{1}, \ldots, x_{n}\right]$ with $\langle F\rangle=$ I. Prove the equivalence of the following statements.

1. F is a Gröbner basis for I.
2. $\forall f \in I$ we have that $f \longrightarrow \stackrel{\star}{F} 0$.
3. $f \longrightarrow_{F}$ for every $f \in I \backslash 0$.
4. $\forall g \in I \forall h \in K\left[x_{1}, \ldots, x_{n}\right]:$ if $g \longrightarrow \stackrel{\star}{F} \underline{h}$ then $h=0$.
5. $\forall g, h_{1}, h_{2} \in K\left[x_{1}, \ldots, x_{n}\right]$: if $g \longrightarrow \stackrel{\star}{h_{1}} \underline{h_{1}}$ and $g \longrightarrow_{F}^{\star} \underline{h_{2}}$ then $h_{1}=h_{2}$.
6. $\langle\operatorname{in}(F)\rangle=\langle\operatorname{in}(I)\rangle$.

Exercise 33. Let $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and G a Gröbner basis for I. Let $g, h \in G$ with $g \neq h$. Prove the following statements.

1. If $\operatorname{lpp}(g) \mid \operatorname{lpp}(h)$ then $G \backslash\{h\}$ is a Gröbner basis for I.
2. If $h \longrightarrow g h^{\prime}$ then $(G \backslash\{h\}) \cup\left\{h^{\prime}\right\}$ is a Gröbner basis for I.

Exercise 34. Use Gröbner bases for solving over \mathbb{C} :

$$
\begin{aligned}
f_{1}(x, y, z) & =x z-x y^{2}-4 x^{2}-\frac{1}{4}=0 \\
f_{2}(x, y, z) & =y^{2} z+2 x+\frac{1}{2}=0 \\
f_{3}(x, y, z) & =x^{2} z+y^{2}+\frac{1}{2} x=0
\end{aligned}
$$

Exercise 35. Consider the polynomials

$$
\begin{aligned}
& f_{1}(x, y)=x^{2} y+x y+1 \\
& f_{2}(x, y)=y^{2}+x+y
\end{aligned}
$$

in $\mathbb{Z}_{3}[x, y]$. Compute a Gröbner basis for the ideal $\left\langle f_{1}, f_{2}\right\rangle$ w.r.t. the graduated lexicographical ordering with $x<y$. Show intermediate results.

