to be prepared for 26.11.2013

Exercise 31. Prove the following theorem.

Let $F \subseteq k[x_1, \ldots, x_n]$. The ideal congruence modulo $\langle F \rangle$ equals the reflexivetransitive-symmetric closure of the reduction relation \longrightarrow_F , i.e., $\equiv_{\langle F \rangle} = \longleftrightarrow_F^*$.

Exercise 32. Let I be an ideal in $K[x_1, \ldots, x_n]$, $F \subset K[x_1, \ldots, x_n]$ with $\langle F \rangle = I$. Prove the equivalence of the following statements.

- 1. F is a Gröbner basis for I.
- 2. $\forall f \in I$ we have that $f \longrightarrow_F^* 0$.
- 3. $f \longrightarrow_F$ for every $f \in I \setminus 0$.
- 4. $\forall g \in I \ \forall h \in K[x_1, \dots, x_n]$: if $g \longrightarrow_F^{\star} \underline{h}$ then h = 0.
- 5. $\forall g, h_1, h_2 \in K[x_1, \dots, x_n]$: if $g \longrightarrow_F^* \underline{h_1}$ and $g \longrightarrow_F^* \underline{h_2}$ then $h_1 = h_2$.
- 6. $\langle \operatorname{in}(F) \rangle = \langle \operatorname{in}(I) \rangle$.

Exercise 33. Let $I \subseteq K[x_1, \ldots, x_n]$ be an ideal and G a Gröbner basis for I. Let $g, h \in G$ with $g \neq h$. Prove the following statements.

- 1. If lpp(g)|lpp(h) then $G \setminus \{h\}$ is a Gröbner basis for I.
- 2. If $h \longrightarrow_{q} h'$ then $(G \setminus \{h\}) \cup \{h'\}$ is a Gröbner basis for I.

Exercise 34. Use Gröbner bases for solving over \mathbb{C} :

$$f_1(x, y, z) = xz - xy^2 - 4x^2 - \frac{1}{4} = 0,$$

$$f_2(x, y, z) = y^2z + 2x + \frac{1}{2} = 0,$$

$$f_3(x, y, z) = x^2z + y^2 + \frac{1}{2}x = 0.$$

Exercise 35. Consider the polynomials

$$f_1(x,y) = x^2y + xy + 1, f_2(x,y) = y^2 + x + y$$

in $\mathbb{Z}_3[x, y]$. Compute a Gröbner basis for the ideal $\langle f_1, f_2 \rangle$ w.r.t. the graduated lexicographical ordering with x < y. Show intermediate results.