to be prepared for 19.11.2013

Exercise 25. Let p be a prime, $m \in \mathbb{N}$. Let K and L be the finite fields $K=G F(p), L=G F(q)$ with $q=p^{m}$. Let

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

be a polynomial with coefficients in L. Demonstrate that the following properties are equivalent.

1. $f(a) \in K$ for every $a \in L$.
2. $x^{q}-x$ divides $f(x)^{p}-f(x)$.

Exercise 26. Let R be a commutative ring with 1 . Demonstrate that the following statements are equivalent:

1. Every ideal in R is generated by a finite set.
2. There are no infinite strictly ascending chains of ideals in R.
3. Every nonempty set S of ideals contains a maximal element (i.e. an ideal $a \in S$ such that $\forall b \in S$, if $a \subseteq b$ then $a=b$.

Exercise 27. The graduated reverse lexicographic ordering on power products of $x_{1}, \ldots, x_{n}<_{\text {grlex }}$ is defined by

$$
\begin{array}{lll}
s<_{\operatorname{grlex}} t \quad \text { iff } \quad \begin{array}{l}
\operatorname{deg}(s)<\operatorname{deg}(t) \\
\operatorname{deg}(s)=\operatorname{deg}(t)
\end{array} \quad \begin{array}{l}
\text { or } \\
\text { and }
\end{array} \quad t<_{\text {lex }, \pi} s ;
\end{array}
$$

where π is the permutation on n letters given by $\pi(j)=n-j+1$ and $<_{\text {lex }, \pi}$ is the lexicographic order wrto. π. Prove that $<_{\text {grlex }}$ is an admissible ordering.
Exercise 28. Let $<_{1}$ be an admissible ordering on $X_{1}=\left[x_{1}, \ldots, x_{i}\right]$ and $<_{2}$ an admissible ordering on $X_{2}=\left[x_{i+1}, \ldots, x_{n}\right]$. Show that the product ordering $<_{\text {prod, }, i,<_{1},<_{2}}$ on $X=\left[x_{1}, \ldots, x_{n}\right]$ is an admissible ordering.

Exercise 29. $R\left[x_{1}, \ldots, x_{n}\right]=R[X]$ denote the polynomial ring in n indeterminates over a commutative ring with 1 . Any admissible ordering $<$ on the monoid of power products $[X]$ induces a partial order \ll on $R[X]$ in the following way:
$f \ll g \quad$ iff $\quad f=0$ and $g \neq 0$ or
$f \neq 0, g \neq 0$ and $\operatorname{lpp}(f)<\operatorname{lpp}(g)$ or
$f \neq 0, g \neq 0, \operatorname{lpp}(f)=\operatorname{lpp}(g)$ and $\operatorname{red}(f) \ll \operatorname{red}(g)$.
Prove that \ll is a Noetherian partial order on $R[X]$.
Exercise 30. Consider the partial order \leq_{π} on \mathbb{N}^{n} defined as

$$
\left(a_{1}, \ldots, a_{n}\right) \leq_{\pi}\left(b_{1}, \ldots, b_{n}\right) \Longleftrightarrow a_{i} \leq b_{i} \forall i \in\{1, \ldots, n\}
$$

Prove that any set $X \subseteq \mathbb{N}^{n}$ contains a finite set $Y \subseteq X$ such that

$$
\forall x \in X \exists y \in Y \text { with } y \leq_{\pi} x
$$

