to be prepared for 19.11.2013

Exercise 25. Let p be a prime, $m \in \mathbb{N}$. Let K and L be the finite fields K = GF(p), L = GF(q) with $q = p^m$. Let

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

be a polynomial with coefficients in L. Demonstrate that the following properties are equivalent.

- 1. $f(a) \in K$ for every $a \in L$.
- 2. $x^q x$ divides $f(x)^p f(x)$.

Exercise 26. Let R be a commutative ring with 1. Demonstrate that the following statements are equivalent:

- 1. Every ideal in R is generated by a finite set.
- 2. There are no infinite strictly ascending chains of ideals in R.
- 3. Every nonempty set S of ideals contains a maximal element (i.e. an ideal $a \in S$ such that $\forall b \in S$, if $a \subseteq b$ then a = b.

Exercise 27. The graduated reverse lexicographic ordering on power products of $x_1, \ldots, x_n <_{\text{grlex}}$ is defined by

 $\begin{array}{ll} s <_{\mathrm{grlex}} t & \mathrm{iff} & \mathrm{deg}(s) < \mathrm{deg}(t) & \mathrm{or} \\ & \mathrm{deg}(s) = \mathrm{deg}(t) & \mathrm{and} & t <_{\mathrm{lex},\pi} s; \end{array}$

where π is the permutation on *n* letters given by $\pi(j) = n - j + 1$ and $<_{\text{lex},\pi}$ is the lexicographic order wrto. π . Prove that $<_{\text{grlex}}$ is an admissible ordering.

Exercise 28. Let $<_1$ be an admissible ordering on $X_1 = [x_1, \ldots, x_i]$ and $<_2$ an admissible ordering on $X_2 = [x_{i+1}, \ldots, x_n]$. Show that the product ordering $<_{prod,i,<_1,<_2}$ on $X = [x_1, \ldots, x_n]$ is an admissible ordering.

Exercise 29. $R[x_1, \ldots, x_n] = R[X]$ denote the polynomial ring in n indeterminates over a commutative ring with 1. Any admissible ordering < on the monoid of power products [X] induces a partial order << on R[X] in the following way: f << g iff f = 0 and $g \neq 0$ or

 $f \neq 0, g \neq 0$ and $\operatorname{lpp}(f) < \operatorname{lpp}(g)$ or

 $f \neq 0, g \neq 0, \operatorname{lpp}(f) = \operatorname{lpp}(g) \text{ and } \operatorname{red}(f) \ll \operatorname{red}(g).$

Prove that << is a Noetherian partial order on R[X].

Exercise 30. Consider the partial order \leq_{π} on \mathbb{N}^n defined as

 $(a_1,\ldots,a_n) \leq_{\pi} (b_1,\ldots,b_n) \iff a_i \leq b_i \ \forall i \in \{1,\ldots,n\}.$

Prove that any set $X \subseteq \mathbb{N}^n$ contains a finite set $Y \subseteq X$ such that

$$\forall x \in X \exists y \in Y \text{ with } y \leq_{\pi} x.$$