The Equality Relation. Paramodulation

Temur Kutsia

RISC, JKU Linz

The Equality Relation

- Equality \approx : A very important relation
- Reflexive
- Symmetric
- Transitive
- Substitute equals by equals
- When equality is used in a theorem, we need extra axioms which describe the properties of equality

The Equality Relation

Example 1

Theorem: Let G be a group with the binary operation \cdot, the inverse ${ }^{-1}$, and the identity e. If $x \cdot x=e$ for all $x \in G$, then G is commutative.

Axioms:

1. For all $x, y \in G, x \cdot y \in G$.
2. For all $x, y, z \in G,(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
3. For all $x \in G, x \cdot e \approx x$.
4. For all $x \in G, x \cdot x^{-1} \approx e$.

The Equality Relation

Example 1 (Cont.)

Express the axioms and the theorem in first-order logic with equality:
(A1) $\forall x, y \cdot \exists z \cdot x \cdot y \approx z$.
(A2) $\forall x, y, z \cdot(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
(A3) $\forall x \cdot x \cdot e \approx x$.
(A4) $\forall x \cdot x \cdot i(x) \approx e$.
(T) $\forall x \cdot x \cdot x \approx e \Rightarrow \forall u, v \cdot u \cdot v \approx v \cdot u$.

The Equality Relation

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \approx f(x, y)$.
2. $(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
3. $x \cdot e \approx x$.
4. $x \cdot i(x) \approx e$.
5. $x \cdot x \approx e$
6. $\neg(a \cdot b \approx b \cdot a)$.

The Equality Relation

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \approx f(x, y)$.
2. $(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
3. $x \cdot e \approx x$.
4. $x \cdot i(x) \approx e$.
5. $x \cdot x \approx e$
6. $a \cdot b \not \approx b \cdot a$.

The Equality Relation

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \approx f(x, y)$.
2. $(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
3. $x \cdot e \approx x$.
4. $x \cdot i(x) \approx e$.
5. $x \cdot x \approx e$
6. $a \cdot b \not \approx b \cdot a$.

Using resolution alone, we can not derive the contradiction here.

The Equality Relation

Example 1 (Cont.)
We need extra axioms to describe the properties of equality:

$$
\begin{array}{ll}
S: y \cdot y \approx f(x, y) . & x \not \approx y \vee y \not \approx z \vee x \approx z \\
& x \cdot y) \cdot z \approx x \cdot(y \cdot z) . \\
x \cdot e \approx x . & x \not \approx y \vee x \not \approx u \vee y \approx u \\
x \cdot i(x) \approx e . & x \not \approx y \vee u \not \approx x \vee y \approx u . \\
x \cdot x \approx e . & x \not \approx y \vee f(z, x) \approx f(z, y) . \\
& x \not \approx y \vee f(x, z) \approx f(y, z) . \\
a \cdot b \not \approx b \cdot a . & x \not \approx y \vee x \cdot z \approx y \cdot z \\
x: x . & x \not \approx y \vee z \cdot x \approx z \cdot y \\
x \not \approx y \vee y \approx x . & x \not \approx y \vee i(x) \approx i(y)
\end{array}
$$

The Equality Relation

Example 1 (Cont.)

We need extra axioms to describe the properties of equality:

$$
\begin{array}{lll}
S: & x \cdot y \approx f(x, y) . & x \not \approx y \vee y \not \approx z \vee x \approx z . \\
& (x \cdot y) \cdot z \approx x \cdot(y \cdot z) . & x \not \approx y \vee x \not \approx u \vee y \approx u . \\
x \cdot e \approx x . & x \not \approx y \vee u \not \approx x \vee y \approx u . \\
x \cdot i(x) \approx e . & x \not \approx y \vee f(z, x) \approx f(z, y) . \\
x \cdot x \approx e . & x \not \approx y \vee f(x, z) \approx f(y, z) . \\
& a \cdot b \not \approx b \cdot a . & x \not \approx y \vee x \cdot z \approx y \cdot z . \\
K: & x \approx x . & x \not \approx y \vee z \cdot x \approx z \cdot y . \\
x \not \approx y \vee y \approx x . & x \not \approx \not \approx y \vee i(x) \approx i(y) .
\end{array}
$$

Unsatisfiability of this set can be proved by resolution.

The Equality Relation

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

The Equality Relation

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

A solution: Use a dedicated inference rule for equality.

Paramodulation

- An inference rule to handle equality, introduced by G. A. Robinson and L. Wos in 1969.
- It can replace the axioms concerning symmetric, transitive, substitutive properties of equality.
- Combined with resolution, paramodulation can be used to prove theorems involving equality.
- Simple, natural, and more efficient than the naive approach described in the previous slide.
- Still, search space can be large. Various improvements have been proposed to improve efficiency.

Unsatisfiablity Under Special Class of Models

- The set S in Example 1 is not unsatisfiable.
- However, it is unsatisfiable in all models of the set K.
- Restriction to special classes of models.

Unsatisfiablity Under Special Class of Models

Definition 1

Given:

- S : a set of clauses,
- \mathcal{I} : the set of all interpretations of S,
- \mathcal{J} : a nonempty subset of \mathcal{I}.
S is said to be \mathcal{J}-unsatisfiable if S is false in every element of \mathcal{J}.

Unsatisfiablity Under Special Class of Models

How can \mathcal{J} be given?

- If it is finite, just list them.
- Otherwise, it is usually defined by the axioms of a theory.
- When the axioms are axioms of the equality theory, \mathcal{J}-unsatisfiable sets are called also \mathcal{E}-unsatisfiable sets.

Unsatisfiablity Under Special Class of Models

- In Example 1, \mathcal{J} is all models of K.
- Since K is the set of axioms of the equality theory, the set S is \mathcal{E}-unsatisfiable.

\mathcal{E}-Interpretation

Given:

- S : A set of clauses,
- I: A Herbrand interpretation of S,
- s, t, r : Terms from the Herbrand universe of S,
- L : A literal in I.
I is called an \mathcal{E}-interpretation of S if it satisfies the following conditions:

1. $s \approx s \in I$;
2. if $s \approx t \in I$, then $t \approx s \in I$;
3. if $s \approx t \in I$ and $t \approx r \in I$, then $s \approx r \in I$;
4. if $s \approx t \in I, L$ contains s, and L^{\prime} is the result of replacing of one occurrence of s in L by t, then $L^{\prime} \in I$.

\mathcal{E}-Interpretation

Example 2

- Let $S:=\{p(a), \neg p(b), a \approx b\}$.
- Then there are 64 Herbrand interpretations of S.
- Among them the following six are \mathcal{E}-interpretations:

$$
\begin{aligned}
& \{p(a) \quad p(b) \quad a \approx a \quad b \approx b \quad a \approx b \quad b \approx a\} \\
& \{\neg p(a) \quad \neg p(b) \quad a \approx a \quad b \approx b \quad a \approx b \quad b \approx a\} \\
& \{p(a) \quad p(b) \quad a \approx a \quad b \approx b \quad a \not \approx b \quad b \not \approx a\} \\
& \{p(a) \quad \neg p(b) \quad a \approx a \quad b \approx b \quad a \not \approx b \quad b \not \approx a\} \\
& \{\neg p(a) \quad p(b) \quad a \approx a \quad b \approx b \quad a \not \approx b \quad b \not \approx a\} \\
& \{\neg p(a) \quad \neg p(b) \quad a \approx a \quad b \approx b \quad a \not \approx b \quad b \not \approx a\}
\end{aligned}
$$

- S is satisfiable, but \mathcal{E}-unsatisfiable.

Towards Herbrand's Theorem for \mathcal{E}-Unsatisfiable Sets

Definition 3

Let S be a set of clauses. The set of the equality axioms for S is the set consisting of the following clauses:

1. $x \approx x$.
2. $x \not \approx y \vee y \approx x$.
3. $x \not \approx y \vee y \not \approx z \vee x \approx z$.
4. $x \not \nVdash y \vee \neg p\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \vee p\left(x_{1}, \ldots, y, \ldots, x_{n}\right)$, where x and y appear in the same position i, for all $1 \leq i \leq n$, for every n-ary predicate symbol p appearing in S.
5. $x \not \approx y \vee f\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \approx f\left(x_{1}, \ldots, y, \ldots, x_{n}\right)$, where x and y appear in the same position i, for all $1 \leq i \leq n$, for every n-ary function symbol f appearing in S.

Towards Herbrand's Theorem for \mathcal{E}-Unsatisfiable Sets

Theorem 1

Let S be a set of clauses and E be the set of equality axioms for S. Then S is \mathcal{E}-unsatisfiable iff $S \cup E$ is unsatisfiable.

Proof.

(\Rightarrow) Assume by contradiction that S is \mathcal{E}-unsatisfiable but $S \cup E$ is satisfiable. Then $I \vDash S \cup E$ for some Herbrand interpretation I. Then I satisfies E. Then I satisfies the conditions of \mathcal{E}-interpretation. Then I is an \mathcal{E}-model of S.
A contradiction.

Towards Herbrand's Theorem for \mathcal{E}-Unsatisfiable Sets

Theorem 1 (Cont.)
Let S be a set of clauses and E be the set of equality axioms for S. Then S is \mathcal{E}-unsatisfiable iff $S \cup E$ is unsatisfiable.

Proof.
(\Leftarrow) Assume by contradiction that $S \cup E$ is unsatisfiable but S is \mathcal{E}-satisfiable. Then $I \vDash S$ for some \mathcal{E}-interpretation I. But then I satisfies E as well. Then I satisfies $S \cup E$.
A contradiction.

Herbrand's Theorem for \mathcal{E}-Unsatisfiable Sets

Theorem 2
A finite set S of clauses is \mathcal{E}-unsatisfiable iff there exists a finite set S^{\prime} of ground instances of clauses in S such that S^{\prime} is unsatisfiable.

Proof.
(\Rightarrow) Let E be the set of equality axioms of S. By Theorem 1, $S \cup E$ is unsatisfiable. By Herbrand's theorem, there is a finite set S^{\prime} of ground instances of clauses in S such that $S^{\prime} \cup E$ is unsatisfiable. Hence, by Theorem $1, S^{\prime}$ is \mathcal{E}-unsatisfiable.
(\Leftarrow) Since S^{\prime} is \mathcal{E}-unsatisfiable, every \mathcal{E}-interpretation falsifies S^{\prime}. Then every \mathcal{E}-interpretation falsifies S. Hence, S is \mathcal{E}-unsatisfiable.

Paramodulation

Example 2

Consider the clauses:

$$
\begin{aligned}
& C_{1}: p(a) . \\
& C_{2}: a \approx b
\end{aligned}
$$

We can substitute b for a in C_{1} to obtain

$$
C_{3}: p(b)
$$

Paramodulation

Example 2

Consider the clauses:

$$
\begin{aligned}
& C_{1}: p(a) \\
& C_{2}: a \approx b
\end{aligned}
$$

We can substitute b for a in C_{1} to obtain

$$
C_{3}: p(b)
$$

Paramodulation is an inference rule that extends this equality substitution rule.

Paramodulation

Example 2

Consider the clauses:

$$
\begin{aligned}
& C_{1}: p(a) \\
& C_{2}: a \approx b
\end{aligned}
$$

We can substitute b for a in C_{1} to obtain

$$
C_{3}: p(b)
$$

Paramodulation is an inference rule that extends this equality substitution rule.
Notation: $A[t]$ for A containing a term t.
A can be a clause, a literal, or a term.

Paramodulation for Ground Clauses

Definition 4

Given:

- A ground clause $C_{1}=L[s] \vee C_{1}^{\prime}$, where $L[s]$ is a literal containing a term s, and C_{1}^{\prime} is a clause,
- a ground clause $C_{2}=s \approx t \vee C_{2}^{\prime}$, where C_{2}^{\prime} is a clause. Infer the following ground clause, called a paramodulant

$$
L[t] \vee C_{1}^{\prime} \vee C_{2}^{\prime}
$$

Paramodulation for Ground Clauses

Example 5

$$
\begin{aligned}
& C_{1}: p_{1}(a) \vee p_{2}(b) \\
& C_{2}: a \approx b \vee p_{3}(b) \\
& \text { Paramodulant of } C_{1} \text { and } C_{2}: p_{1}(b) \vee p_{2}(b) \vee p_{3}(b) .
\end{aligned}
$$

Binary Paramodulation for General Clauses

Definition 6

Given:

- A general clause $C_{1}=L[r] \vee C_{1}^{\prime}$, where $L[r]$ is a literal containing a term r, and C_{1}^{\prime} is a clause,
- a general clause $C_{2}=s \approx t \vee C_{2}^{\prime}$, where C_{2}^{\prime} is a clause, C_{1} and C_{2} have no variables in common, and s and r have an mgu σ. Infer the following clause, called a binary paramodulant of the parent clauses C_{1} and C_{2} :

$$
L \sigma[t \sigma] \vee C_{1}^{\prime} \sigma \vee C_{2}^{\prime} \sigma .
$$

The literals L and $s \approx t$ are called the literals paramodulated upon. Sometimes one also says that paramodulation has been applied from C_{2} into C_{1}.

Binary Paramodulation for General Clauses

Example 7

- $C_{1}: p_{1}(g(f(x))) \vee p_{2}(x)$.
- $C_{2}: f(g(b)) \approx a \vee p_{3}(g(c))$.
- An mgu of $f(x)$ and $f(g(b)): \sigma=\{x \mapsto g(b)\}$.
- Paramodulant of C_{1} and $C_{2}: p_{1}(g(a)) \vee p_{2}(g(b)) \vee p_{3}(g(c))$.
- The literals paramodulated upon are $p_{1}(g(f(x)))$ and $f(g(b)) \approx a$.

Putting Things Together: The Inference system $\mathcal{R} \mathcal{P}$

Binary Resolution: $\quad \frac{A \vee C \neg B \vee D}{(C \vee D) \sigma}, \quad \sigma=m g u(A, B)$
Positive Factoring: $\quad \frac{A \vee B \vee C}{(A \vee C) \sigma}, \quad \sigma=m g u(A, B)$

Binary Paramodulation: $\quad \frac{s \approx t \vee C \quad L[r] \vee D}{(L[t] \vee C \vee D) \sigma}, \quad \sigma=m g u(s, r)$

Reflexivity Resolution: $\quad \frac{s \not \approx t \vee C}{C \sigma}, \quad \quad \sigma=m g u(s, t)$
A, B atomic formulas, C, D clauses, L literal, s, t, r terms.

Completeness of $\mathcal{R} \mathcal{P}$

Theorem 3
If S is an \mathcal{E}-unsatisfiable set of clauses, then the empty clause can be generated from S using the rules in $\mathcal{R P}$.

Resolution and Paramodulation

Example 8
(1) $q(a)$
(2) $\neg q(a) \vee f(x) \approx x$
(3) $p(x) \vee p(f(a))$
(4) $\neg p(x) \vee \neg p(f(x))$

Resolution and Paramodulation

Example 8

(1) $q(a)$
(2) $\neg q(a) \vee f(x) \approx x$
(3) $p(x) \vee p(f(a))$
(4) $\neg p(x) \vee \neg p(f(x))$
(5) $f(x) \approx x$

Resolution (1,2)

Resolution and Paramodulation

Example 8

(1) $q(a)$
(2) $\neg q(a) \vee f(x) \approx x$
(3) $p(x) \vee p(f(a))$
(4) $\neg p(x) \vee \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a))$

Resolution (1,2)
Resolution (factor 3,4)

Resolution and Paramodulation

Example 8

(1) $q(a)$
(2) $\neg q(a) \vee f(x) \approx x$
(3) $p(x) \vee p(f(a))$
(4) $\neg p(x) \vee \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a))$
(7) $\quad \neg p(f(a))$

Resolution (1,2)
Resolution (factor 3,4)
Paramodulation $(5,6)$

Resolution and Paramodulation

Example 8

(1) $q(a)$
(2) $\neg q(a) \vee f(x) \approx x$
(3) $p(x) \vee p(f(a))$
(4) $\neg p(x) \vee \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a))$
(7) $\quad \neg p(f(a))$

Resolution (1,2)
Resolution (factor 3,4)
Paramodulation $(5,6)$

Resolution and Paramodulation

Example 8

(1) $q(a)$
(2) $\neg q(a) \vee f(x) \approx x$
(3) $p(x) \vee p(f(a))$
(4) $\neg p(x) \vee \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a))$
(7) $\quad \neg p(f(a))$
(8) \square

Resolution (1,2)
Resolution (factor 3,4)
Paramodulation $(5,6)$
Resolution (factor 3,7)

Restriction of Paramodulation

- Unrestricted use of paramodulation can make the inference system too inefficient.
- For instance, from an equation $f(a) \approx a$ it can generate infinitely many new equations:

$$
f(f(a)) \approx a, f(f(f(a))) \approx a, \ldots
$$

- History of paramodulation-based proving: Restrict applications of the paramodulation rule.
- Important restrictions:
- Prohibit paramodulation into a variable.
- The use of reduction orderings.
- The basic strategy of paramodulation.
- Simplification.

