The Equality Relation. Paramodulation

Temur Kutsia

RISC, JKU Linz

- ► Equality ≈: A very important relation
- Reflexive
- Symmetric
- Transitive
- Substitute equals by equals
- When equality is used in a theorem, we need extra axioms which describe the properties of equality

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Example 1

Theorem: Let G be a group with the binary operation \cdot , the inverse $^{-1}$, and the identity e. If $x \cdot x = e$ for all $x \in G$, then G is commutative.

Axioms:

- 1. For all $x, y \in G$, $x \cdot y \in G$.
- 2. For all $x, y, z \in G$, $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$.
- 3. For all $x \in G$, $x \cdot e \approx x$.
- 4. For all $x \in G$, $x \cdot x^{-1} \approx e$.

Example 1 (Cont.)

Express the axioms and the theorem in first-order logic with equality:

$$\begin{array}{ll} (\mathsf{A1}) & \forall x, y. \; \exists z. \; x \cdot y \approx z. \\ (\mathsf{A2}) & \forall x, y, z. \; (x \cdot y) \cdot z \approx x \cdot (y \cdot z). \\ (\mathsf{A3}) & \forall x. \; x \cdot e \approx x. \\ (\mathsf{A4}) & \forall x. \; x \cdot i(x) \approx e. \\ (\mathsf{T}) & \forall x. \; x \cdot x \approx e \Rightarrow \forall u, v. \; u \cdot v \approx v \cdot u. \end{array}$$

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \approx f(x, y)$. 2. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$. 3. $x \cdot e \approx x$. 4. $x \cdot i(x) \approx e$. 5. $x \cdot x \approx e$ 6. $\neg (a \cdot b \approx b \cdot a)$.

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \approx f(x, y)$. 2. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$. 3. $x \cdot e \approx x$. 4. $x \cdot i(x) \approx e$. 5. $x \cdot x \approx e$ 6. $a \cdot b \neq b \cdot a$.

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \approx f(x, y)$. 2. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$. 3. $x \cdot e \approx x$. 4. $x \cdot i(x) \approx e$. 5. $x \cdot x \approx e$ 6. $a \cdot b \notin b \cdot a$.

Using resolution alone, we can not derive the contradiction here.

A D F A B F A B F A B F

Example 1 (Cont.)

We need extra axioms to describe the properties of equality:

$$S: x \cdot y \approx f(x, y). \qquad x \notin y \lor y \notin z \lor x \approx z.$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z). \qquad x \notin y \lor x \notin u \lor y \approx u.$$

$$x \cdot e \approx x. \qquad x \notin y \lor u \notin x \lor y \approx u.$$

$$x \cdot i(x) \approx e. \qquad x \notin y \lor f(z, x) \approx f(z, y).$$

$$x \cdot x \approx e. \qquad x \notin y \lor f(x, z) \approx f(y, z).$$

$$a \cdot b \notin b \cdot a. \qquad x \notin y \lor x \cdot z \approx y \cdot z.$$

$$K: x \approx x. \qquad x \notin y \lor y \approx x. \qquad x \notin y \lor i(x) \approx i(y).$$

э

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Example 1 (Cont.)

We need extra axioms to describe the properties of equality:

Unsatisfiability of this set can be proved by resolution.

э

・ ロ ト ・ 白 ト ・ 正 ト ・ 正 ト

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- clumsy approach.
- Generates large search space.
- Hopelessly inefficient.
- A solution: Use a dedicated inference rule for equality.

- An inference rule to handle equality, introduced by G. A. Robinson and L. Wos in 1969.
- It can replace the axioms concerning symmetric, transitive, substitutive properties of equality.
- Combined with resolution, paramodulation can be used to prove theorems involving equality.
- Simple, natural, and more efficient than the naive approach described in the previous slide.
- Still, search space can be large. Various improvements have been proposed to improve efficiency.

- The set S in Example 1 is not unsatisfiable.
- However, it is unsatisfiable in all models of the set K.
- Restriction to special classes of models.

Definition 1

Given:

- S: a set of clauses,
- \blacktriangleright $\mathcal{I}:$ the set of all interpretations of S ,
- \mathcal{J} : a nonempty subset of \mathcal{I} .

S is said to be $\mathcal{J}\text{-unsatisfiable}$ if S is false in every element of $\mathcal{J}.$

How can ${\mathcal J}$ be given?

- If it is finite, just list them.
- Otherwise, it is usually defined by the axioms of a theory.
- When the axioms are axioms of the equality theory,
 J-unsatisfiable sets are called also *E*-unsatisfiable sets.

- In Example 1, \mathcal{J} is all models of K.
- Since K is the set of axioms of the equality theory, the set S is *E*-unsatisfiable.

\mathcal{E} -Interpretation

Given:

- S: A set of clauses,
- I: A Herbrand interpretation of S,
- s, t, r: Terms from the Herbrand universe of S,
- L: A literal in I.

I is called an $\mathcal E\text{-interpretation}$ of S if it satisfies the following conditions:

- 1. $s \approx s \in I$;
- 2. if $s \approx t \in I$, then $t \approx s \in I$;
- 3. if $s \approx t \in I$ and $t \approx r \in I$, then $s \approx r \in I$;
- 4. if $s \approx t \in I$, L contains s, and L' is the result of replacing of one occurrence of s in L by t, then $L' \in I$.

A D F A B F A B F A B F

\mathcal{E} -Interpretation

Example 2

- Let $S \coloneqq \{p(a), \neg p(b), a \approx b\}.$
- Then there are 64 Herbrand interpretations of S.
- ▶ Among them the following six are *E*-interpretations:

$$\begin{cases} p(a) & p(b) & a \approx a & b \approx b & a \approx b & b \approx a \\ \{\neg p(a) & \neg p(b) & a \approx a & b \approx b & a \approx b & b \approx a \\ \} \\ \{p(a) & p(b) & a \approx a & b \approx b & a \neq b & b \neq a \\ \{p(a) & \neg p(b) & a \approx a & b \approx b & a \neq b & b \neq a \\ \{\neg p(a) & p(b) & a \approx a & b \approx b & a \neq b & b \neq a \\ \{\neg p(a) & \neg p(b) & a \approx a & b \approx b & a \neq b & b \neq a \\ \} \\ \{\neg p(a) & \neg p(b) & a \approx a & b \approx b & a \neq b & b \neq a \\ \end{cases}$$

 \blacktriangleright S is satisfiable, but $\mathcal E\text{-unsatisfiable}.$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Towards Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Definition 3

Let S be a set of clauses. The set of the equality axioms for S is the set consisting of the following clauses:

- 1. $x \approx x$.
- 2. $x \neq y \lor y \approx x$.
- 3. $x \neq y \lor y \neq z \lor x \approx z$.
- 4. $x \notin y \lor \neg p(x_1, \ldots, x, \ldots, x_n) \lor p(x_1, \ldots, y, \ldots, x_n)$, where x and y appear in the same position i, for all $1 \le i \le n$, for every n-ary predicate symbol p appearing in S.
- 5. $x \notin y \lor f(x_1, \ldots, x, \ldots, x_n) \approx f(x_1, \ldots, y, \ldots, x_n)$, where x and y appear in the same position i, for all $1 \le i \le n$, for every n-ary function symbol f appearing in S.

A D > A D > A D > A D >

Towards Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Theorem 1

Let S be a set of clauses and E be the set of equality axioms for S. Then S is \mathcal{E} -unsatisfiable iff $S \cup E$ is unsatisfiable.

Proof.

 $(\Rightarrow) Assume by contradiction that S is \mathcal{E}\text{-unsatisfiable but } S \cup E is satisfiable. Then <math>I \models S \cup E$ for some Herbrand interpretation I. Then I satisfies E. Then I satisfies the conditions of $\mathcal{E}\text{-interpretation}$. Then I is an $\mathcal{E}\text{-model}$ of S. A contradiction.

Towards Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Theorem 1 (Cont.)

Let S be a set of clauses and E be the set of equality axioms for S. Then S is \mathcal{E} -unsatisfiable iff $S \cup E$ is unsatisfiable.

Proof.

(\Leftarrow) Assume by contradiction that $S \cup E$ is unsatisfiable but S is \mathcal{E} -satisfiable. Then $I \models S$ for some \mathcal{E} -interpretation I. But then I satisfies E as well. Then I satisfies $S \cup E$. A contradiction.

Herbrand's Theorem for *E*-Unsatisfiable Sets

Theorem 2

A finite set S of clauses is \mathcal{E} -unsatisfiable iff there exists a finite set S' of ground instances of clauses in S such that S' is unsatisfiable.

Proof.

- (⇒) Let *E* be the set of equality axioms of *S*. By Theorem 1, $S \cup E$ is unsatisfiable. By Herbrand's theorem, there is a finite set *S'* of ground instances of clauses in *S* such that $S' \cup E$ is unsatisfiable. Hence, by Theorem 1, *S'* is *E*-unsatisfiable.
- $(\Leftarrow) \text{ Since } S' \text{ is } \mathcal{E}\text{-unsatisfiable, every } \mathcal{E}\text{-interpretation falsifies } S'.$ Then every $\mathcal{E}\text{-interpretation falsifies } S$. Hence, S is $\mathcal{E}\text{-unsatisfiable.}$

(日)

Example 2

Consider the clauses:

 $C_1: p(a).$ $C_2: a \approx b.$

We can substitute b for a in C_1 to obtain

 C_3 : p(b).

Example 2

Consider the clauses:

 $C_1: p(a).$ $C_2: a \approx b.$

We can substitute b for a in C_1 to obtain

 $C_3: p(b).$

Paramodulation is an inference rule that extends this equality substitution rule.

Example 2

Consider the clauses:

 $C_1: p(a).$ $C_2: a \approx b.$

We can substitute b for a in C_1 to obtain

 $C_3: p(b).$

Paramodulation is an inference rule that extends this equality substitution rule.

Notation: A[t] for A containing a term t. A can be a clause, a literal, or a term.

Paramodulation for Ground Clauses

Definition 4

Given:

- A ground clause C₁ = L[s] ∨ C'₁, where L[s] is a literal containing a term s, and C'₁ is a clause,
- a ground clause $C_2 = s \approx t \vee C_2'$, where C_2' is a clause.

Infer the following ground clause, called a paramodulant

 $L[t] \lor C_1' \lor C_2'.$

Paramodulation for Ground Clauses

Example 5

 $C_1: p_1(a) \lor p_2(b)$ $C_2: a \approx b \lor p_3(b)$ Paramodulant of C_1 and $C_2: p_1(b) \lor p_2(b) \lor p_3(b)$.

Binary Paramodulation for General Clauses

Definition 6

Given:

- A general clause $C_1 = L[r] \lor C'_1$, where L[r] is a literal containing a term r, and C'_1 is a clause,
- a general clause $C_2 = s \approx t \vee C'_2$, where C'_2 is a clause, C_1 and C_2 have no variables in common, and s and r have an mgu σ .

Infer the following clause, called a binary paramodulant of the parent clauses C_1 and C_2 :

 $L\sigma[t\sigma] \lor C_1' \sigma \lor C_2' \sigma.$

The literals L and $s \approx t$ are called the literals paramodulated upon. Sometimes one also says that paramodulation has been applied from C_2 into C_1 .

Binary Paramodulation for General Clauses

Example 7

- C_1 : $p_1(g(f(x))) \lor p_2(x)$.
- C_2 : $f(g(b)) \approx a \lor p_3(g(c))$.
- An mgu of f(x) and f(g(b)): $\sigma = \{x \mapsto g(b)\}.$
- Paramodulant of C_1 and C_2 : $p_1(g(a)) \lor p_2(g(b)) \lor p_3(g(c))$.

(日)、

э

• The literals paramodulated upon are $p_1(g(f(x)))$ and $f(g(b)) \approx a$.

Putting Things Together: The Inference system \mathcal{RP}

Binary Resolution:	$\frac{A \lor C \neg B \lor D}{(C \lor D)\sigma},$	$\sigma = mgu(A,B)$
Positive Factoring:	$\frac{A \vee B \vee C}{(A \vee C)\sigma},$	$\sigma = mgu(A,B)$
Binary Paramodulation:	$\frac{s \approx t \vee C L[r] \vee D}{(L[t] \vee C \vee D)\sigma},$	$\sigma = mgu(s,r)$
Reflexivity Resolution:	$\frac{s \not \approx t \lor C}{C\sigma},$	σ = $mgu(s,t)$

A,B atomic formulas, C,D clauses, L literal, s,t,r terms.

э

人口 医水管 医水管 医水管

Completeness of \mathcal{RP}

Theorem 3 If S is an \mathcal{E} -unsatisfiable set of clauses, then the empty clause can be generated from S using the rules in \mathcal{RP} .

Example 8

(1)
$$q(a)$$

(2) $\neg q(a) \lor f(x) \approx x$
(3) $p(x) \lor p(f(a))$
(4) $\neg p(x) \lor \neg p(f(x))$

Example 8

(1)
$$q(a)$$

(2) $\neg q(a) \lor f(x) \approx x$
(3) $p(x) \lor p(f(a))$
(4) $\neg p(x) \lor \neg p(f(x))$
(5) $f(x) \approx x$

Resolution (1,2)

Example 8

(1)
$$q(a)$$

(2) $\neg q(a) \lor f(x) \approx x$
(3) $p(x) \lor p(f(a))$
(4) $\neg p(x) \lor \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a)))$

Resolution (1,2) Resolution (factor 3,4)

Example 8

(1)
$$q(a)$$

(2) $\neg q(a) \lor f(x) \approx x$
(3) $p(x) \lor p(f(a))$
(4) $\neg p(x) \lor \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a)))$

(7)
$$\neg p(f(a))$$

Resolution (1,2) Resolution (factor 3,4) Paramodulation (5,6)

Example 8

(1)
$$q(a)$$

(2) $\neg q(a) \lor f(x) \approx x$
(3) $p(x) \lor p(f(a))$
(4) $\neg p(x) \lor \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a)))$

(7)
$$\neg p(f(a))$$

Resolution (1,2) Resolution (factor 3,4) Paramodulation (5,6)

Example 8

(1)
$$q(a)$$

(2) $\neg q(a) \lor f(x) \approx x$
(3) $p(x) \lor p(f(a))$
(4) $\neg p(x) \lor \neg p(f(x))$
(5) $f(x) \approx x$
(6) $\neg p(f(f(a)))$
(7) $\neg p(f(a))$

(8)

Resolution (1,2) Resolution (factor 3,4) Paramodulation (5,6) Resolution (factor 3,7)

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Restriction of Paramodulation

- Unrestricted use of paramodulation can make the inference system too inefficient.
- For instance, from an equation f(a) ≈ a it can generate infinitely many new equations:
 f(f(a)) ≈ a, f(f(f(a))) ≈ a,....
- History of paramodulation-based proving: Restrict applications of the paramodulation rule.
- Important restrictions:
 - Prohibit paramodulation into a variable.
 - The use of reduction orderings.
 - The basic strategy of paramodulation.
 - Simplification.

