
Rewriting-Based Deduction. Completion

Temur Kutsia

RISC, JKU Linz



Motivation

▸ Unrestricted use of the paramodulation rule can be very
inefficient.

▸ Various methods have been proposed to restrict it without
compromising the completeness.

▸ Term rewriting contributed essential techniques for refining
paramodulation into a practical inference system.



Rewriting-Based Deduction for Unit Equalities

▸ We assume that the given set of clauses consists of unit
equalities and one ground inequality.

▸ Goal: Design a calculus which works on such sets, restricts
applications of the paramodulation rule, and is complete.

▸ Later this calculus can be extended to general clauses.



Equational Theory

▸ E: A set of equations.

▸ A: The set of equality axioms for E.

▸ E ⊧ s ≈ t iff I ⊧ s ≈ t for all interpretations I which is a model
of E ∪A.

▸ Equational theory of E:

≈E ∶= {(s, t) ∣ E ⊧ s ≈ t}

▸ Notation: s ≈E t iff (s, t) ∈ ≈E .



Basic Concepts in Term Rewriting

▸ A rewrite rule is an ordered pair of terms, written l → r.

▸ Term rewriting system (TRS): a set of rewrite rules.



Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?



Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?



Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?



Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?



Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

▸ Refute and skolemize the goal, obtaining the ground
disequation s′ /≈E t′.

▸ Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

▸ In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

▸ If yes, stop. You obtained a contradiction, which proves
s ≈E t.

▸ If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.



Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

▸ Refute and skolemize the goal, obtaining the ground
disequation s′ /≈E t′.

▸ Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

▸ In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

▸ If yes, stop. You obtained a contradiction, which proves
s ≈E t.

▸ If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.



Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

▸ Refute and skolemize the goal, obtaining the ground
disequation s′ /≈E t′.

▸ Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

▸ In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

▸ If yes, stop. You obtained a contradiction, which proves
s ≈E t.

▸ If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.



Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

▸ Refute and skolemize the goal, obtaining the ground
disequation s′ /≈E t′.

▸ Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

▸ In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

▸ If yes, stop. You obtained a contradiction, which proves
s ≈E t.

▸ If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.



Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

▸ Refute and skolemize the goal, obtaining the ground
disequation s′ /≈E t′.

▸ Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

▸ In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

▸ If yes, stop. You obtained a contradiction, which proves
s ≈E t.

▸ If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.



Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

▸ Refute and skolemize the goal, obtaining the ground
disequation s′ /≈E t′.

▸ Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

▸ In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

▸ If yes, stop. You obtained a contradiction, which proves
s ≈E t.

▸ If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.



What We Need To Know

▸ What is rewriting?

▸ What is a ground convergent set of equations and rewrite
rules?

▸ What is completion?



Basic Concepts in Term Rewriting

R: A term rewriting system.

▸ The rewrite relation induced by R, denoted →R, is a binary
relation on terms defined as:

s→R t iff

there exist l → r ∈ R, a position p in s, a substitution σ

such that s∣p = lσ and t = s[rσ]p.

▸ Obviously R ⊆ →R.

▸ We may omit R when it is obvious from the context.



Basic Concepts in Term Rewriting

R: A term rewriting system.

▸ The rewrite relation induced by R, denoted →R, is a binary
relation on terms defined as:

s→R t iff

there exist l → r ∈ R, a position p in s, a substitution σ

such that s∣p = lσ and t = s[rσ]p.

▸ Obviously R ⊆ →R.

▸ We may omit R when it is obvious from the context.



Basic Concepts in Term Rewriting

▸ s rewrites to t by R iff s→R t.

▸ ←R stands for the inverse and →∗R for reflexive-transitive
closure of →R.

▸ s is irreducible by R iff there is no t such that s→R t.

▸ t is a normal form of s by R iff s→∗R t and t is irreducible
by R.

▸ R is terminating iff →R is well-founded, i.e., there is no
infinite sequence of rewrite steps s1 →R s2 →R s3 →R ⋯.



Basic Concepts in Term Rewriting

▸ R is confluent iff for all terms s, t1, t2, if

s→∗R t1 and s→∗R t2,

then there exists a term r such that

t1 →∗R r and t2 →∗R r.

Graphically:
s t1

t2 r

∗

∗

∗∗



Basic Concepts in Term Rewriting

▸ R is confluent iff for all terms s, t1, t2, if

s→∗R t1 and s→∗R t2,

then there exists a term r such that

t1 →∗R r and t2 →∗R r.

Graphically:
s t1

t2 r

∗

∗

∗∗



Basic Concepts in Term Rewriting

▸ t1 and t2 are joinable by R if there exists a term r such that

t1 →∗R r and t2 →∗R r.

▸ Notation: t1 ↓R t2.



Basic Concepts in Term Rewriting

Example 1

Let + be a binary (infix) function symbol, s a unary function
symbol, 0 a constant.

R ∶= {0 + x→ x, s(x) + y → s(x + y)}.

Then:

▸ s(0) + s(s(0)) →R s(0 + s(s(0))) →R s(s(s(0))).
▸ s(0) + s(s(0)) →∗R s(s(s(0))).
▸ s(s(s(0))) is irreducible by R and, hence, is a normal form of
s(0) + s(s(0)), of s(0 + s(s(0))), and of s(s(s(0))).



Basic Concepts in Term Rewriting

▸ A TRS R is convergent iff it is confluent and terminating.

▸ A convergent TRS provides a decision procedure for the
underlying equational theory: Two terms are equivalent iff
they reduce to the same normal form.

▸ Computation of normal forms by repeated reduction is a don’t
care non-deterministic process for convergent TRSs.



Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then sσ > tσ for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l → r ∈ R.



Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then sσ > tσ for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l → r ∈ R.



Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then sσ > tσ for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l → r ∈ R.



Reduction Orders

Example 2

▸ ∣t∣: The size of the term t.

▸ The order >1: s >1 t iff ∣s∣ > ∣t∣.

▸ >1 is monotonic and well-founded.

▸ However, >1 is not a reduction order because it is not stable:

∣f(f(x,x), y)∣ = 5 > 3 = ∣f(y, y)∣

For σ = {y ↦ f(x,x)}:

∣σ(f(f(x,x), y))∣ = ∣f(f(x,x), f(x,x))∣ = 7,

∣σ(f(y, y)∣ = ∣f(f(x,x), f(x,x))∣ = 7.



Reduction Orders

Example 2

▸ ∣t∣: The size of the term t.

▸ The order >1: s >1 t iff ∣s∣ > ∣t∣.
▸ >1 is monotonic and well-founded.

▸ However, >1 is not a reduction order because it is not stable:

∣f(f(x,x), y)∣ = 5 > 3 = ∣f(y, y)∣

For σ = {y ↦ f(x,x)}:

∣σ(f(f(x,x), y))∣ = ∣f(f(x,x), f(x,x))∣ = 7,

∣σ(f(y, y)∣ = ∣f(f(x,x), f(x,x))∣ = 7.



Reduction Orders

Example 2

▸ ∣t∣: The size of the term t.

▸ The order >1: s >1 t iff ∣s∣ > ∣t∣.
▸ >1 is monotonic and well-founded.

▸ However, >1 is not a reduction order because it is not stable:

∣f(f(x,x), y)∣ = 5 > 3 = ∣f(y, y)∣

For σ = {y ↦ f(x,x)}:

∣σ(f(f(x,x), y))∣ = ∣f(f(x,x), f(x,x))∣ = 7,

∣σ(f(y, y)∣ = ∣f(f(x,x), f(x,x))∣ = 7.



Reduction Orders

Example 2 (Cont.)

▸ ∣t∣x: The number of occurrences of x in t.

▸ The order >2: s >2 t iff ∣s∣ > ∣t∣ and ∣s∣x ≥ ∣t∣x for all x.

▸ >2 is a reduction order.



Reduction Orders

Example 2 (Cont.)

▸ ∣t∣x: The number of occurrences of x in t.

▸ The order >2: s >2 t iff ∣s∣ > ∣t∣ and ∣s∣x ≥ ∣t∣x for all x.

▸ >2 is a reduction order.



Methods for Construction Reduction Orders

▸ Polynomial orders
▸ Simplification orders:

▸ Recursive path orders
▸ Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also automatically.



Methods for Construction Reduction Orders

▸ Polynomial orders
▸ Simplification orders:

▸ Recursive path orders
▸ Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also automatically.



Lexicographic Path Order

Main idea behind recursive path orders:

▸ Two terms are compared by first comparing their root
symbols.

▸ Then recursively comparing the collections of their immediate
subterms.

▸ Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

▸ Collections seen as tuples yields the lexicographic path order.

▸ Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)



Lexicographic Path Order

Main idea behind recursive path orders:

▸ Two terms are compared by first comparing their root
symbols.

▸ Then recursively comparing the collections of their immediate
subterms.

▸ Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

▸ Collections seen as tuples yields the lexicographic path order.

▸ Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)



Lexicographic Path Order

Main idea behind recursive path orders:

▸ Two terms are compared by first comparing their root
symbols.

▸ Then recursively comparing the collections of their immediate
subterms.

▸ Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

▸ Collections seen as tuples yields the lexicographic path order.

▸ Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)



Lexicographic Path Order

Main idea behind recursive path orders:

▸ Two terms are compared by first comparing their root
symbols.

▸ Then recursively comparing the collections of their immediate
subterms.

▸ Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

▸ Collections seen as tuples yields the lexicographic path order.

▸ Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)



Lexicographic Path Order

Definition 1
Let F be a finite signature and > be a strict order on F (called the
precedence). The lexicographic path order >lpoon T (F ,V) induced
by > is defined as follows:

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

≥lpo stands for the reflexive closure of >lpo .



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(x, e) >lpo x by (LPO1)

▸ i(e) >lpo e by (LPO2a), because e ≥lpo e.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(x, e) >lpo x by (LPO1)

▸ i(e) >lpo e by (LPO2a), because e ≥lpo e.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(x, e) >lpo x by (LPO1)

▸ i(e) >lpo e by (LPO2a), because e ≥lpo e.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ i(f(x, y)) >?lpo f(i(x), i(y)):

▸ Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?lpo i(x) and i(f(x, y)) >?lpo i(y).

▸ i(f(x, y)) >?lpo i(x) is reduced by (LPO2c) to i(f(x, y)) >?lpo x
and f(x, y) >?lpo x, which hold by (LPO1).

▸ i(f(x, y)) >lpo i(y) is shown similarly.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ i(f(x, y)) >?lpo f(i(x), i(y)):

▸ Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?lpo i(x) and i(f(x, y)) >?lpo i(y).

▸ i(f(x, y)) >?lpo i(x) is reduced by (LPO2c) to i(f(x, y)) >?lpo x
and f(x, y) >?lpo x, which hold by (LPO1).

▸ i(f(x, y)) >lpo i(y) is shown similarly.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ i(f(x, y)) >?lpo f(i(x), i(y)):

▸ Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?lpo i(x) and i(f(x, y)) >?lpo i(y).

▸ i(f(x, y)) >?lpo i(x) is reduced by (LPO2c) to i(f(x, y)) >?lpo x
and f(x, y) >?lpo x, which hold by (LPO1).

▸ i(f(x, y)) >lpo i(y) is shown similarly.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ i(f(x, y)) >?lpo f(i(x), i(y)):

▸ Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?lpo i(x) and i(f(x, y)) >?lpo i(y).

▸ i(f(x, y)) >?lpo i(x) is reduced by (LPO2c) to i(f(x, y)) >?lpo x
and f(x, y) >?lpo x, which hold by (LPO1).

▸ i(f(x, y)) >lpo i(y) is shown similarly.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ i(f(x, y)) >?lpo f(i(x), i(y)):

▸ Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?lpo i(x) and i(f(x, y)) >?lpo i(y).

▸ i(f(x, y)) >?lpo i(x) is reduced by (LPO2c) to i(f(x, y)) >?lpo x
and f(x, y) >?lpo x, which hold by (LPO1).

▸ i(f(x, y)) >lpo i(y) is shown similarly.



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(f(x, y), z) >?lpo f(x, f(y, z))). By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo x because of (LPO1).
▸ f(f(x, y), z) >?lpo f(y, z): By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
▸ f(x, y) >lpo y by (LPO1).

▸ f(x, y) >lpo x by (LPO1).



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(f(x, y), z) >?lpo f(x, f(y, z))). By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo x because of (LPO1).
▸ f(f(x, y), z) >?lpo f(y, z): By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
▸ f(x, y) >lpo y by (LPO1).

▸ f(x, y) >lpo x by (LPO1).



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(f(x, y), z) >?lpo f(x, f(y, z))). By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo x because of (LPO1).

▸ f(f(x, y), z) >?lpo f(y, z): By (LPO2c) with i = 1:
▸ f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
▸ f(x, y) >lpo y by (LPO1).

▸ f(x, y) >lpo x by (LPO1).



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(f(x, y), z) >?lpo f(x, f(y, z))). By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo x because of (LPO1).
▸ f(f(x, y), z) >?lpo f(y, z): By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
▸ f(x, y) >lpo y by (LPO1).

▸ f(x, y) >lpo x by (LPO1).



Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t ≠ s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

▸ f(f(x, y), z) >?lpo f(x, f(y, z))). By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo x because of (LPO1).
▸ f(f(x, y), z) >?lpo f(y, z): By (LPO2c) with i = 1:

▸ f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
▸ f(x, y) >lpo y by (LPO1).

▸ f(x, y) >lpo x by (LPO1).



Reduction Orders

▸ Reduction orders are not total for terms with variables.

▸ For instance, f(x) and f(y) can not be ordered.

▸ f(x, y) and f(y, x) can not be ordered either.

▸ However, many reduction orders are total on ground terms.

▸ Fortunately, in theorem proving applications one can often
reason about non-ground formulas by considering the
corresponding ground instances.

▸ In such situations, ordered rewriting techniques can be applied.



Ordered Rewriting

▸ Given: A reduction order > and a set of equations E.

▸ The rewrite system E> is defined as

E> ∶= {sσ → rσ ∣ (s ≈ t ∈ E or t ≈ s ∈ E) and sσ > tσ}

▸ The rewrite relation →E> induced by E> represents ordered
rewriting with respect to E and >.



Ordered Rewriting

Example 4

▸ If > is a lexicographic path ordering with precedence
+ > a > b > c, then b + c > c + b > c.

▸ Let E ∶= {x + y ≈ y + x}.

▸ We may use the commutativity equation for ordered rewriting.

▸ (b + c) + c→E> (c + b) + c→E> c + (c + b).



Ordered Rewriting

▸ If > is a reduction ordering total on ground terms, then E>

contains all (non-trivial) ground instances of an equation
s ≈ t ∈ E, either as a rule sσ → tσ or a rule tσ → sσ.

▸ A rewrite system R is called ground convergent if the induced
ground rewrite relation (that is, the rewrite relation →R

restricted to pairs of ground terms) is terminating and
confluent.

▸ A set of equations E is called ground convergent with respect
to > if E> is ground convergent.



Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

s ≈ t r[u] ≈ v
(r[t] ≈ v)σ ,

where σ =mgu(s, u), tσ /≥ sσ, vσ /≥ rσ, and u is not a variable.

The equation (r[t] ≈ v)σ is called an ordered critical pair (with
overlapped term r[u]σ) between s ≈ t and r[u] ≈ v.

Lemma 1
Let > be a ground total reduction ordering. A set E of equations is
ground convergent with respect to > iff for all ordered critical pairs
(r[t] ≈ v)σ (with overlapped term r[u]σ) between equations in E
and for all ground substitutions ϕ, if r[u]σϕ > r[t]σϕ and
r[u]σϕ > vσϕ, then r[t]σϕ ↓E> vσϕ.



Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

s ≈ t r[u] ≈ v
(r[t] ≈ v)σ ,

where σ =mgu(s, u), tσ /≥ sσ, vσ /≥ rσ, and u is not a variable.

The equation (r[t] ≈ v)σ is called an ordered critical pair (with
overlapped term r[u]σ) between s ≈ t and r[u] ≈ v.

Lemma 1
Let > be a ground total reduction ordering. A set E of equations is
ground convergent with respect to > iff for all ordered critical pairs
(r[t] ≈ v)σ (with overlapped term r[u]σ) between equations in E
and for all ground substitutions ϕ, if r[u]σϕ > r[t]σϕ and
r[u]σϕ > vσϕ, then r[t]σϕ ↓E> vσϕ.



Critical Pairs

Example 5

▸ Let E ∶= {f(f(x)) ≈ g(x)} and > be the LPO with f > g.

▸ Take a critical pair between the equation and its renamed
copy, f(f(x)) ≈ g(x) and f(f(y)) ≈ g(y).

f(f(f(x)))

f(g(x)) g(f(x))

▸ f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) �E> g(f(x)).

▸ E is not ground convergent with respect to >.



Critical Pairs

Example 5

▸ Let E ∶= {f(f(x)) ≈ g(x)} and > be the LPO with f > g.

▸ Take a critical pair between the equation and its renamed
copy, f(f(x)) ≈ g(x) and f(f(y)) ≈ g(y).

f(f(f(x)))

f(g(x)) g(f(x))

▸ f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) �E> g(f(x)).

▸ E is not ground convergent with respect to >.



Critical Pairs

Example 5

▸ Let E ∶= {f(f(x)) ≈ g(x)} and > be the LPO with f > g.

▸ Take a critical pair between the equation and its renamed
copy, f(f(x)) ≈ g(x) and f(f(y)) ≈ g(y).

f(f(f(x)))

f(g(x)) g(f(x))

▸ f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) �E> g(f(x)).

▸ E is not ground convergent with respect to >.



Adding Critical Pairs to Equations

▸ Since critical pairs are equational consequences, adding a
critical pair to the set of equations does not change the
induced equational theory.

▸ If E′ is obtained from E by adding a critical pair, then
≈E =≈E′ .

▸ The idea of adding a critical pair as a new equation is called
“completion”.



Convergence

Example 6

▸ Let E′ ∶= {f(f(x)) ≈ g(x), f(g(x)) ≈ g(f(x))}
▸ Let > be the LPO with f > g.

▸ E′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

▸ E′ is (ground) convergent.



Convergence

Example 6

▸ Let E′ ∶= {f(f(x)) ≈ g(x), f(g(x)) ≈ g(f(x))}
▸ Let > be the LPO with f > g.

▸ E′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

▸ E′ is (ground) convergent.



Convergence

Example 6

▸ Let E′ ∶= {f(f(x)) ≈ g(x), f(g(x)) ≈ g(f(x))}
▸ Let > be the LPO with f > g.

▸ E′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

▸ E′ is (ground) convergent.



Ordered Completion

▸ Described as a set of inference rules.

▸ Parametrized by a reduction ordering >.

▸ Works on pairs (E,R), where E is a set of equations and R is
a set of rewrite rules.

▸ E;R ⊢ E′;R′ means that E′;R′ can be obtained from E;R
by applying a completion inference.



Ordered Completion: Notions

▸ Derivation: A (finite or countably infinite) sequence
(E0;R0) ⊢ (E1;R1)⋯.

▸ Usually, E0 is the set of initial equations and R0 = ∅.

▸ The limit of a derivation: the pair Eω;Rω, where

Eω ∶= ⋃
i≥0
⋂
j≥i

Ej and Rω ∶= ⋃
i≥0
⋂
j≥i

Rj .

▸ Goal: to obtain a limit system that is ground convergent.



Ordered Completion: Notation

▸ ⊎: Disjoint union

▸ s ⊳ t: Strict encompassment relation. An instance of t is a
subterm of s, but not vice versa.

▸ s ≊ t stands for s ≈ t or t ≈ s.

▸ CP>(E ∪R): The set of all ordered critical pairs, with the
ordering >, generated by equations in E and rewrite rules in R
treated as equations.



Ordered Completion: Rules

Deduction: E;R ⊢ E ∪ {s ≈ t};R
if s ≈ t ∈ CP>(E ∪R).

Orientation: E ⊎ {s ≊ t};R ⊢ E;R ∪ {s→ t}, if s > t.

Deletion: E ⊎ {s ≈ s};R ⊢ E;R.

Composition: E;R ⊎ {s→ t} ⊢ E;R ∪ {s→ r},
if t→R∪E> r.



Ordered Completion: Rules

Simplification: E ∪ {s ≊ t};R ⊢ E ∪ {u ≈ t};R,
if s→R u or s→E> u with lσ → rσ

for l ≊ r ∈ E, s ⊳ l.

Collapse: E;R ⊎ {s→ t} ⊢ E ∪ {u ≈ t};R,
if s→R u or s→E> u with lσ → rσ

for l ≊ r ∈ E, s ⊳ l.



Ordered Completion: Properties

Theorem 2
Let (E0;R0), (E1;R1), . . . be an ordered completion derivation
where all critical pairs are eventually generated (a fair derivation).
Then these three properties are equivalent for all ground terms s
and t:

(1) E0 ⊧ s ≈ t.
(2) s ↓E>ω∪Rω t.

(3) s ↓E>i ∪Ri
t for some i ≥ 0.

This theorem, in particular, asserts the refutational completeness
of ordered completion.



Proving by Ordered Completion: Example

Given:

1. (x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z).

2. x ⋅ e ≈ x.

3. x ⋅ i(x) ≈ e.

4. x ⋅ x ≈ e.

Prove

Goal: x ⋅ y ≈ y ⋅ x.



Proving by Ordered Completion: Example

Proof by ordered completion:

▸ Skolemize the goal: a ⋅ b ≈ b ⋅ a.

▸ Take LPO as the reduction ordering with the precedence
i > f > e > a > b

▸ E0 ∶= {(x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z), x ⋅ e ≈ x, x ⋅ i(x) ≈ e, x ⋅ x ≈ e}
▸ R0 ∶= ∅
▸ Start applying the rules.



Proving by Ordered Completion: Example

E0 = {(x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z), x ⋅ e ≈ x, x ⋅ i(x) ≈ e, x ⋅ x ≈ e}
R0 = ∅

Apply Orient 4 times:

E4 = ∅
R4 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e}

Apply Deduce with the rules (x ⋅ y) ⋅ z → x ⋅ (y ⋅ z) and x ⋅ e→ x
to the overlapping term (x ⋅ e) ⋅ z, and then Orient:

E6 = ∅
R6 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E0 = {(x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z), x ⋅ e ≈ x, x ⋅ i(x) ≈ e, x ⋅ x ≈ e}
R0 = ∅

Apply Orient 4 times:

E4 = ∅
R4 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e}

Apply Deduce with the rules (x ⋅ y) ⋅ z → x ⋅ (y ⋅ z) and x ⋅ e→ x
to the overlapping term (x ⋅ e) ⋅ z, and then Orient:

E6 = ∅
R6 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E6 = ∅
R6 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2}

Apply Deduce with the rules x1 ⋅ (e ⋅x2) → x1 ⋅x2 and x ⋅ i(x) → e
to the overlapping term x1 ⋅ (e ⋅ i(e)):

E7 = {x1 ⋅ i(e) ≈ x1 ⋅ e}
R7 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E7 = {x1 ⋅ i(e) ≈ x1 ⋅ e}
R7 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2}

Apply Orient to x1 ⋅ i(e) ≈ x1 ⋅ e and then Composition with
the rule x ⋅ e→ x:

E9 = ∅
R9 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, x ⋅ i(e) → x}



Proving by Ordered Completion: Example

E9 = ∅
R9 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, x ⋅ i(e) → x}

Apply Deduce with the rules x ⋅ x→ e and x ⋅ i(e) → x to the
overlapping term e ⋅ i(e), and then Orient:

E11 = ∅
R11 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, x ⋅ i(e) → x, i(e) → e}



Proving by Ordered Completion: Example

E11 = ∅
R11 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, x ⋅ i(e) → x, i(e) → e}

Apply Collapse to x ⋅ i(e) → x with i(e) → e:

E12 = {x ⋅ e ≈ x}
R12 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e}



Proving by Ordered Completion: Example

E12 = {x ⋅ e ≈ x}
R12 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e}

Apply Simplification to x ⋅ e ≈ x with x ⋅ e→ x and then
Delete to the obtained x ≈ x:

E14 = ∅
R14 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e}



Proving by Ordered Completion: Example

E14 = ∅
R14 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e}

Apply Deduce to (x ⋅ y) ⋅ z → x ⋅ (y ⋅ z) and x ⋅ i(x) → e with the
overlapping term (x ⋅ i(x)) ⋅ z and then Orient:

E16 = ∅
R16 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2}



Proving by Ordered Completion: Example

E16 = ∅
R16 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2}

Apply Deduce to x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2 and x ⋅ x→ e with the
overlapping term x1 ⋅ (i(x1) ⋅ i(x1)):

E17 = {e ⋅ i(x) ≈ x ⋅ e}
R17 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2}



Proving by Ordered Completion: Example

E17 = {e ⋅ i(x) ≈ x ⋅ e}
R17 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2}

Apply Simplification to e ⋅ i(x) ≈ x ⋅ e with x ⋅ e→ x and then
Orient:

E19 = ∅
R19 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ i(x) → x}



Proving by Ordered Completion: Example

E19 = ∅
R19 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ i(x) → x}

Apply Deduce to x1 ⋅ (e ⋅ x2) → x1 ⋅ x2 and e ⋅ i(x) → x with the
overlapping term x1 ⋅ (e ⋅ i(x2)) and then Orient:

E21 = ∅
R21 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ i(x) → x, x1 ⋅ i(x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E21 = ∅
R21 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ i(x) → e, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ i(x) → x, x1 ⋅ i(x2) → x1 ⋅ x2}

Applying Collapse, Simplification, and Delete, we get rid
of x ⋅ i(x) → e:

E24 = ∅
R24 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ i(x) → x, x1 ⋅ i(x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E24 = ∅
R24 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ i(x) → x, x1 ⋅ i(x2) → x1 ⋅ x2}

Applying Collapse and Orient, we replace e ⋅ i(x) → x with
e ⋅ x→ x:

E26 = ∅
R26 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E26 = ∅
R26 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (e ⋅ x2) → x1 ⋅ x2, i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2}

Applying Collapse and Delete, we get rid of
x1 ⋅ (e ⋅ x2) → x1 ⋅ x2:

E28 = ∅
R28 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E28 = ∅
R28 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2}

Apply Deduce to e ⋅ x→ x and x1 ⋅ i(x2) → x1 ⋅ x2 with the
overlapping term e ⋅ i(x2):

E29 = {i(x1) ≈ e ⋅ x2}
R29 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2}



Proving by Ordered Completion: Example

E29 = {i(x2) ≈ e ⋅ x2}
R29 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2}

Apply Simplification to i(x1) ≈ e ⋅ x2 with e ⋅ x→ x and then
Orient:

E31 = ∅
R31 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}



Proving by Ordered Completion: Example

E31 = ∅
R31 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

i(e) → e, x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2,
e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}

Apply Collapse and Delete, we get rid of i(e) → e:

E33 = ∅
R33 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2, e ⋅ x→ x,

x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}



Proving by Ordered Completion: Example

E33 = ∅
R33 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2, e ⋅ x→ x,

x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}

Applying Composition, we replace x1 ⋅ (i(x1) ⋅ x2) → e ⋅ x2 by
x1 ⋅ (i(x1) ⋅ x2) → x2:

E34 = ∅
R34 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (i(x1) ⋅ x2) → x2, e ⋅ x→ x,

x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}



Proving by Ordered Completion: Example

E34 = ∅
R34 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (i(x1) ⋅ x2) → x2, e ⋅ x→ x,

x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}

Applying Simplification and Orient, we replace
x1 ⋅ (i(x1) ⋅ x2) → x2 by x1 ⋅ (x1 ⋅ x2) → x2:

E36 = ∅
R36 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x,

x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}



Proving by Ordered Completion: Example

E36 = ∅
R36 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (i(x1) ⋅ x2) → x2, e ⋅ x→ x,

x1 ⋅ i(x2) → x1 ⋅ x2, i(x) → x}

Apply Deduce to (x ⋅ y) ⋅ z → x ⋅ (y ⋅ z) and x ⋅ x→ e with the
overlapping term (x1 ⋅ x2) ⋅ (x1 ⋅ x2), then Orient:

E37 = ∅
R37 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e}



Proving by Ordered Completion: Example

E37 = ∅
R37 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e}

Apply Deduce to x1 ⋅ (x1 ⋅ x2) → x2 and x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e
with the overlapping term x1 ⋅ (x1 ⋅ (x2 ⋅ (x1 ⋅ x2))), then Orient:

E39 = ∅
R39 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e, x2 ⋅ (x1 ⋅ x2) → x1 ⋅ e}



Proving by Ordered Completion: Example

E39 = ∅
R39 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e, x2 ⋅ (x1 ⋅ x2) → x1 ⋅ e}

Apply Composition to x2 ⋅ (x1 ⋅ x2) → x1 ⋅ e with x ⋅ e→ x:

E40 = ∅
R40 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e, x2 ⋅ (x1 ⋅ x2) → x1}



Proving by Ordered Completion: Example

E41 = ∅
R41 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e, x2 ⋅ (x1 ⋅ x2) → x1}

Apply Deduce to x1 ⋅ (x1 ⋅ x2) → x2 and x2 ⋅ (x1 ⋅ x2) → x1 with
the overlapping term x2 ⋅ (x2 ⋅ (x1 ⋅ x2)):

E42 = {x1 ⋅ x2 ≈ x2 ⋅ x1}
R42 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e, x2 ⋅ (x1 ⋅ x2) → x1 ⋅ e}



Proving by Ordered Completion: Example

E42 = {x1 ⋅ x2 ≈ x2 ⋅ x1}
R42 = {(x ⋅ y) ⋅ z → x ⋅ (y ⋅ z), x ⋅ e→ x, x ⋅ x→ e,

x1 ⋅ (x1 ⋅ x2) → x2, e ⋅ x→ x, x1 ⋅ i(x2) → x1 ⋅ x2,
i(x) → x, x1 ⋅ (x2 ⋅ (x1 ⋅ x2)) → e, x2 ⋅ (x1 ⋅ x2) → x1 ⋅ e}

The equation x1 ⋅ x2 ≈ x2 ⋅ x1 joins the goal a ⋅ b ≈ b ⋅ a. Hence, the
goal is proved.


	*



