Rewriting-Based Deduction. Completion

Temur Kutsia

RISC, JKU Linz

Motivation

- Unrestricted use of the paramodulation rule can be very inefficient.
- Various methods have been proposed to restrict it without compromising the completeness.
- ► Term rewriting contributed essential techniques for refining paramodulation into a practical inference system.

Rewriting-Based Deduction for Unit Equalities

- We assume that the given set of clauses consists of unit equalities and one ground inequality.
- Goal: Design a calculus which works on such sets, restricts applications of the paramodulation rule, and is complete.
- Later this calculus can be extended to general clauses.

Equational Theory

- E: A set of equations.
- A: The set of equality axioms for E.
- ▶ $E \vDash s \approx t$ iff $I \vDash s \approx t$ for all interpretations I which is a model of $E \cup A$.
- ► Equational theory of *E*:

$$\approx_E := \{(s,t) \mid E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s,t) \in \approx_E$.

- A rewrite rule is an ordered pair of terms, written $l \rightarrow r$.
- ► Term rewriting system (TRS): a set of rewrite rules.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

The problem is undecidable for an arbitrary ${\cal E}.$

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS, the problem is decidable.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS, the problem is decidable.

What's this?

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Solving Idea:

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Solving Idea:

▶ Refute and skolemize the goal, obtaining the ground disequation $s' \not \models_E t'$.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ▶ Refute and skolemize the goal, obtaining the ground disequation $s' \not \models_E t'$.
- ightharpoonup Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Solving Idea:

▶ Refute and skolemize the goal, obtaining the ground disequation $s' \not \models_E t'$.

- ▶ Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s' and t' can be rewritten to the same term with the equations and rules constructed so far.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ▶ Refute and skolemize the goal, obtaining the ground disequation $s' \not \models_E t'$.
- ▶ Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s' and t' can be rewritten to the same term with the equations and rules constructed so far.
- If yes, stop. You obtained a contradiction, which proves $s \approx_E t$.

Given: A set of equations E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ▶ Refute and skolemize the goal, obtaining the ground disequation $s' \not \models_E t'$.
- ▶ Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s' and t' can be rewritten to the same term with the equations and rules constructed so far.
- If yes, stop. You obtained a contradiction, which proves $s \approx_E t$.
- If not, continue with completion. If this is not possible, then report: $s \approx_E t$ does not hold.

What We Need To Know

- What is rewriting?
- What is a ground convergent set of equations and rewrite rules?
- What is completion?

R: A term rewriting system.

▶ The rewrite relation induced by R, denoted \rightarrow_R , is a binary relation on terms defined as:

$$s \to_R t$$
 iff there exist $l \to r \in R$, a position p in s , a substitution σ such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

R: A term rewriting system.

► The rewrite relation induced by R, denoted \rightarrow_R , is a binary relation on terms defined as:

$$s \to_R t$$
 iff

there exist $l \to r \in R$, a position p in s, a substitution σ such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

- Obviously $R \subseteq \rightarrow_R$.
- lacktriangle We may omit R when it is obvious from the context.

- s rewrites to t by R iff $s \rightarrow_R t$.
- ▶ \leftarrow_R stands for the inverse and \rightarrow_R^* for reflexive-transitive closure of \rightarrow_R .
- s is irreducible by R iff there is no t such that $s \to_R t$.
- ▶ t is a normal form of s by R iff $s \rightarrow_R^* t$ and t is irreducible by R.
- ▶ R is terminating iff \rightarrow_R is well-founded, i.e., there is no infinite sequence of rewrite steps $s_1 \rightarrow_R s_2 \rightarrow_R s_3 \rightarrow_R \cdots$.

• R is confluent iff for all terms s, t_1, t_2 , if

$$s \rightarrow_R^* t_1$$
 and $s \rightarrow_R^* t_2$,

then there exists a term r such that

$$t_1 \to_R^* r$$
 and $t_2 \to_R^* r$.

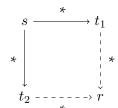
• R is confluent iff for all terms s, t_1, t_2 , if

$$s \rightarrow_R^* t_1$$
 and $s \rightarrow_R^* t_2$,

then there exists a term r such that

$$t_1 \to_R^* r$$
 and $t_2 \to_R^* r$.

Graphically:



• t_1 and t_2 are joinable by R if there exists a term r such that $t_1 \to_R^* r$ and $t_2 \to_R^* r$.

▶ Notation: $t_1 \downarrow_R t_2$.

Example 1

Let + be a binary (infix) function symbol, s a unary function symbol, 0 a constant.

$$R \coloneqq \{0 + x \to x, \quad s(x) + y \to s(x + y)\}.$$

Then:

- \bullet $s(0) + s(s(0)) \to_R s(0 + s(s(0))) \to_R s(s(s(0))).$
- \bullet $s(0) + s(s(0)) \to_R^* s(s(s(0))).$
- s(s(s(0))) is irreducible by R and, hence, is a normal form of s(0) + s(s(0)), of s(0 + s(s(0))), and of s(s(s(0))).

- ▶ A TRS R is convergent iff it is confluent and terminating.
- A convergent TRS provides a decision procedure for the underlying equational theory: Two terms are equivalent iff they reduce to the same normal form.
- Computation of normal forms by repeated reduction is a don't care non-deterministic process for convergent TRSs.

A strict order > on terms is called a reduction order iff it is

- 1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;
- 2. stable: If s > t, then $s\sigma > t\sigma$ for all terms s,t and a substitution σ ;
- 3. well-founded.

A strict order > on terms is called a reduction order iff it is

- 1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;
- 2. stable: If s > t, then $s\sigma > t\sigma$ for all terms s,t and a substitution σ ;
- 3. well-founded.

Why are reduction orders interesting?

A strict order > on terms is called a reduction order iff it is

- 1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;
- 2. stable: If s > t, then $s\sigma > t\sigma$ for all terms s,t and a substitution σ ;
- 3. well-founded.

Why are reduction orders interesting?

Theorem 1

A TRS R terminates iff there exists a reduction order > that satisfies l > r for all $l \rightarrow r \in R$.

Example 2

- |t|: The size of the term t.
- The order $>_1$: $s>_1 t$ iff |s|>|t|.

Example 2

- |t|: The size of the term t.
- The order $>_1$: $s >_1 t$ iff |s| > |t|.
- $ightharpoonup >_1$ is monotonic and well-founded.

Example 2

- |t|: The size of the term t.
- The order $>_1$: $s >_1 t$ iff |s| > |t|.
- ▶ >1 is monotonic and well-founded.
- ▶ However, >1 is not a reduction order because it is not stable:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$
 For $\sigma = \{y \mapsto f(x,x)\}$:
$$|\sigma(f(f(x,x),y))| = |f(f(x,x),f(x,x))| = 7,$$

$$|\sigma(f(y,y)| = |f(f(x,x),f(x,x))| = 7.$$

Example 2 (Cont.)

- $|t|_x$: The number of occurrences of x in t.
- ▶ The order $>_2$: $s>_2 t$ iff |s|>|t| and $|s|_x \ge |t|_x$ for all x.

Example 2 (Cont.)

- $|t|_x$: The number of occurrences of x in t.
- ▶ The order >2: s > 2t iff |s| > |t| and $|s|_x \ge |t|_x$ for all x.
- $ightharpoonup >_2$ is a reduction order.

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
 - Recursive path orders
 - Knuth-Bendix orders

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
 - Recursive path orders
 - Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be used to show termination; not only by hand, but also automatically.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order.
 (Not considered in this course.)

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order.
 (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order.
 (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.
- Combination of multisets and tuples yields the recursive path order with status. (Not considered in this course.)

Definition 1

Let $\mathcal F$ be a finite signature and > be a strict order on $\mathcal F$ (called the precedence). The lexicographic path order $>_{lpo}$ on $T(\mathcal F,\mathcal V)$ induced by > is defined as follows:

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,\ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,\ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g,\ s>_{lpo}t_j \text{ for all } j,\ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

 \geq_{lpo} stands for the reflexive closure of $>_{lpo}$.


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i, \ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3

 $\mathcal{F} = \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i, \ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3

 $\mathcal{F} = \{f, i, e\} \text{, } f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$

•
$$f(x,e) >_{lpo} x$$
 by (LPO1)


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3

 $\mathcal{F} = \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$

- $f(x,e) >_{lpo} x$ by (LPO1)
- $i(e) >_{lpo} e$ by (LPO2a), because $e \ge_{lpo} e$.


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, \ f \ \text{is binary,} \ i \ \text{is unary,} \ e \ \text{is constant, with} \ i > f > e.$


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$ $i(f(x,y)) >_{lno}^{?} f(i(x), i(y)):$


```
s>_{lpo} t iff
 (LPO1) t \in \mathcal{V}ar(s) and t \neq s, or
 (LPO2) s = f(s_1, \ldots, s_m), t = q(t_1, \ldots, t_n), \text{ and }
       (LPO2a) s_i \ge_{lpo} t for some i, 1 \le i \le m, or
       (LPO2b) f > g and s >_{lpo} t_j for all j, 1 \le j \le n, or
       (LPO2c) f = g, s >_{lpo} t_j for all j, 1 \le j \le n, and there exists i,
                   1 \le i \le m such that s_1 = t_1, \dots s_{i-1} = t_{i-1} and s_i >_{lpo} t_i.
Example 3 (Cont.)
\mathcal{F} = \{f, i, e\}, f is binary, i is unary, e is constant, with i > f > e.
   • i(f(x,y)) >_{lno}^{?} f(i(x),i(y)):
          • Since i > f, (LPO2b) reduces it to the problems:
               i(f(x,y)) >_{l_{n_0}}^{?} i(x) and i(f(x,y)) >_{l_{n_0}}^{?} i(y).
```



```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,\ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,\ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g,\ s>_{lpo}t_j \text{ for all } j,\ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$

- $i(f(x,y)) >_{lpo}^{?} f(i(x),i(y))$:
 - Since i > f, (LPO2b) reduces it to the problems: $i(f(x,y)) >_{lvo}^{?} i(x)$ and $i(f(x,y)) >_{lvo}^{?} i(y)$.
 - $i(f(x,y)) >_{lpo}^? i(x)$ is reduced by (LPO2c) to $i(f(x,y)) >_{lpo}^? x$ and $f(x,y) >_{lpo}^? x$, which hold by (LPO1).


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,\ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,\ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g,\ s>_{lpo}t_j \text{ for all } j,\ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$

- $i(f(x,y)) >_{lpo}^{?} f(i(x),i(y))$:
 - Since i > f, (LPO2b) reduces it to the problems: $i(f(x,y)) >_{lno}^{?} i(x)$ and $i(f(x,y)) >_{lno}^{?} i(y)$.
 - $i(f(x,y)) >_{lpo}^? i(x)$ is reduced by (LPO2c) to $i(f(x,y)) >_{lpo}^? x$ and $f(x,y) >_{lpo}^? x$, which hold by (LPO1).
 - $i(f(x,y)) >_{lpo} i(y)$ is shown similarly.


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, \ f \ \text{is binary,} \ i \ \text{is unary,} \ e \ \text{is constant, with} \ i > f > e.$


```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and } s_i>_{lpo}t_i. \end{split}
```

Example 3 (Cont.)


```
s>_{lpo} t iff
 (LPO1) t \in \mathcal{V}ar(s) and t \neq s, or
 (LPO2) s = f(s_1, \ldots, s_m), t = q(t_1, \ldots, t_n), \text{ and }
       (LPO2a) s_i \geq_{lno} t for some i, 1 \leq i \leq m, or
       (LPO2b) f > g and s >_{lpo} t_j for all j, 1 \le j \le n, or
       (LPO2c) f = g, s >_{lpo} t_j for all j, 1 \le j \le n, and there exists i,
                   1 \le i \le m such that s_1 = t_1, \dots s_{i-1} = t_{i-1} and s_i >_{lpo} t_i.
Example 3 (Cont.)
\mathcal{F} = \{f, i, e\}, f is binary, i is unary, e is constant, with i > f > e.
   • f(f(x,y),z) >_{lpo}^{?} f(x,f(y,z))). By (LPO2c) with i = 1:
          • f(f(x,y),z) >_{lno} x because of (LPO1).
```



```
s>_{lpo} t iff
 (LPO1) t \in \mathcal{V}ar(s) and t \neq s, or
 (LPO2) s = f(s_1, \ldots, s_m), t = q(t_1, \ldots, t_n), \text{ and }
       (LPO2a) s_i \geq_{lno} t for some i, 1 \leq i \leq m, or
       (LPO2b) f > g and s >_{lpo} t_j for all j, 1 \le j \le n, or
       (LPO2c) f = g, s >_{lpo} t_j for all j, 1 \le j \le n, and there exists i,
                  1 \le i \le m such that s_1 = t_1, \dots s_{i-1} = t_{i-1} and s_i >_{lpo} t_i.
Example 3 (Cont.)
\mathcal{F} = \{f, i, e\}, f is binary, i is unary, e is constant, with i > f > e.
   • f(f(x,y),z) >_{lpo}^{?} f(x,f(y,z))). By (LPO2c) with i = 1:
         • f(f(x,y),z) >_{lpo} x because of (LPO1).
         • f(f(x,y),z) >_{lno}^{?} f(y,z): By (LPO2c) with i = 1:
                • f(f(x,y),z)>_{lpo}y and f(f(x,y),z)>_{lpo}z by (LPO1).
                • f(x,y) >_{lno} y by (LPO1).
```



```
s>_{lpo} t iff
 (LPO1) t \in \mathcal{V}ar(s) and t \neq s, or
 (LPO2) s = f(s_1, \ldots, s_m), t = q(t_1, \ldots, t_n), \text{ and }
       (LPO2a) s_i \geq_{lno} t for some i, 1 \leq i \leq m, or
       (LPO2b) f > g and s >_{lpo} t_j for all j, 1 \le j \le n, or
       (LPO2c) f = g, s >_{lpo} t_j for all j, 1 \le j \le n, and there exists i,
                  1 \le i \le m such that s_1 = t_1, \dots s_{i-1} = t_{i-1} and s_i >_{lpo} t_i.
Example 3 (Cont.)
\mathcal{F} = \{f, i, e\}, f is binary, i is unary, e is constant, with i > f > e.
   • f(f(x,y),z) >_{lno}^{?} f(x,f(y,z)). By (LPO2c) with i = 1:
         • f(f(x,y),z) >_{lpo} x because of (LPO1).
         • f(f(x,y),z) >_{lno}^{?} f(y,z): By (LPO2c) with i = 1:
                • f(f(x,y),z)>_{lpo} y and f(f(x,y),z)>_{lpo} z by (LPO1).
                • f(x,y) >_{lno} y by (LPO1).
          • f(x,y) >_{lno} x by (LPO1).
```


Reduction Orders

- Reduction orders are not total for terms with variables.
- For instance, f(x) and f(y) can not be ordered.
- f(x,y) and f(y,x) can not be ordered either.
- However, many reduction orders are total on ground terms.
- Fortunately, in theorem proving applications one can often reason about non-ground formulas by considering the corresponding ground instances.
- In such situations, ordered rewriting techniques can be applied.

Ordered Rewriting

- Given: A reduction order > and a set of equations E.
- ▶ The rewrite system E is defined as

$$E^{>} \coloneqq \{s\sigma \to r\sigma \mid (s \approx t \in E \text{ or } t \approx s \in E) \text{ and } s\sigma > t\sigma\}$$

▶ The rewrite relation $\rightarrow_{E^>}$ induced by $E^>$ represents ordered rewriting with respect to E and >.

Ordered Rewriting

Example 4

- ▶ If > is a lexicographic path ordering with precedence + > a > b > c, then b + c > c + b > c.
- Let $E := \{x + y \approx y + x\}.$
- We may use the commutativity equation for ordered rewriting.
- $(b+c)+c \to_{E^{>}} (c+b)+c \to_{E^{>}} c+(c+b)$.

Ordered Rewriting

- If > is a reduction ordering total on ground terms, then $E^{>}$ contains all (non-trivial) ground instances of an equation $s \approx t \in E$, either as a rule $s\sigma \to t\sigma$ or a rule $t\sigma \to s\sigma$.
- A rewrite system R is called ground convergent if the induced ground rewrite relation (that is, the rewrite relation \rightarrow_R restricted to pairs of ground terms) is terminating and confluent.
- ${\bf \blacktriangleright}$ A set of equations E is called ground convergent with respect to > if $E^{>}$ is ground convergent.

Ordered rewriting leads to the inference rule, called superposition:

$$\frac{s \approx t \qquad r[u] \approx v}{(r[t] \approx v)\sigma},$$

where $\sigma = mgu(s, u)$, $t\sigma \ngeq s\sigma$, $v\sigma \ngeq r\sigma$, and u is not a variable.

The equation $(r[t] \approx v)\sigma$ is called an ordered critical pair (with overlapped term $r[u]\sigma$) between $s \approx t$ and $r[u] \approx v$.

Ordered rewriting leads to the inference rule, called superposition:

$$\frac{s \approx t \qquad r[u] \approx v}{(r[t] \approx v)\sigma},$$

where $\sigma = mgu(s, u)$, $t\sigma \not\geq s\sigma$, $v\sigma \not\geq r\sigma$, and u is not a variable.

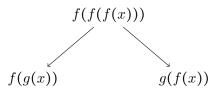
The equation $(r[t] \approx v)\sigma$ is called an ordered critical pair (with overlapped term $r[u]\sigma$) between $s \approx t$ and $r[u] \approx v$.

Lemma 1

Let > be a ground total reduction ordering. A set E of equations is ground convergent with respect to > iff for all ordered critical pairs $(r[t] \approx v)\sigma$ (with overlapped term $r[u]\sigma$) between equations in E and for all ground substitutions φ , if $r[u]\sigma\varphi > r[t]\sigma\varphi$ and $r[u]\sigma\varphi > v\sigma\varphi$, then $r[t]\sigma\varphi\downarrow_{E^{>}}v\sigma\varphi$.

Example 5

- ▶ Let $E := \{f(f(x)) \approx g(x)\}$ and > be the LPO with f > g.
- ► Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.



Example 5

- ▶ Let $E := \{f(f(x)) \approx g(x)\}$ and > be the LPO with f > g.
- ► Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

$$f(f(f(x)))$$

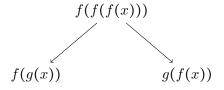
$$f(g(x))$$

$$g(f(x))$$

► f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but $f(g(x)) \downarrow_{E^{>}} g(f(x))$.

Example 5

- ▶ Let $E := \{f(f(x)) \approx g(x)\}$ and > be the LPO with f > g.
- ▶ Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.



- ► f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but $f(g(x)) \downarrow_{E^{>}} g(f(x))$.
- ightharpoonup E is not ground convergent with respect to >.

Adding Critical Pairs to Equations

- Since critical pairs are equational consequences, adding a critical pair to the set of equations does not change the induced equational theory.
- If E' is obtained from E by adding a critical pair, then $\approx_E = \approx_{E'}$.
- ► The idea of adding a critical pair as a new equation is called "completion".

Convergence

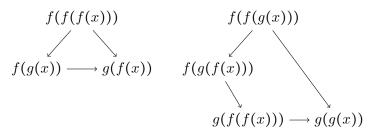
Example 6

- $\blacktriangleright \ \mathsf{Let} \ E' \coloneqq \{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let > be the LPO with f > g.

Convergence

Example 6

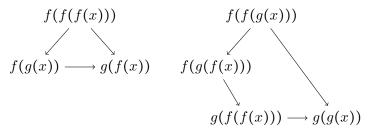
- ▶ Let $E' := \{ f(f(x)) \approx g(x), f(g(x)) \approx g(f(x)) \}$
- Let > be the LPO with f > g.
- E' has two critical pairs. Both are joinable:



Convergence

Example 6

- ▶ Let $E' \coloneqq \{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let > be the LPO with f > g.
- E' has two critical pairs. Both are joinable:



• E' is (ground) convergent.

Ordered Completion

- Described as a set of inference rules.
- Parametrized by a reduction ordering >.
- Works on pairs (E,R), where E is a set of equations and R is a set of rewrite rules.
- $E; R \vdash E'; R'$ means that E'; R' can be obtained from E; R by applying a completion inference.

Ordered Completion: Notions

- ▶ Derivation: A (finite or countably infinite) sequence $(E_0; R_0) \vdash (E_1; R_1) \cdots$
- Usually, E_0 is the set of initial equations and $R_0 = \emptyset$.
- ▶ The limit of a derivation: the pair E_{ω} ; R_{ω} , where

$$E_{\omega} \coloneqq \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j \text{ and } R_{\omega} \coloneqq \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j.$$

▶ Goal: to obtain a limit system that is ground convergent.

Ordered Completion: Notation

- ▶ ⊎: Disjoint union
- ▶ $s \triangleright t$: Strict encompassment relation. An instance of t is a subterm of s, but not vice versa.
- $s \cong t$ stands for $s \approx t$ or $t \approx s$.
- $CP_{>}(E \cup R)$: The set of all ordered critical pairs, with the ordering >, generated by equations in E and rewrite rules in R treated as equations.

Ordered Completion: Rules

DEDUCTION:
$$E; R \vdash E \cup \{s \approx t\}; R$$

if
$$s \approx t \in CP_{>}(E \cup R)$$
.

Orientation:
$$E \uplus \{s \cong t\}; R \vdash E; R \cup \{s \rightarrow t\}, \text{ if } s > t.$$

Deletion:
$$E \uplus \{s \approx s\}; R \vdash E; R.$$

Composition:
$$E; R \uplus \{s \to t\} \vdash E; R \cup \{s \to r\},$$
 if $t \to_{R \cup E^{>}} r$.

Ordered Completion: Rules

$$\begin{split} \text{SIMPLIFICATION:} \qquad E \cup \{s \approxeq t\}; R \vdash E \cup \{u \approx t\}; R, \\ & \text{if } s \to_R u \text{ or } s \to_{E^>} u \text{ with } l\sigma \to r\sigma \\ & \text{for } l \approxeq r \in E, s \rhd l. \end{split}$$

$$\label{eq:collapse:equation} \begin{split} \text{Collapse:} \qquad E; R \uplus \{s \to t\} \vdash E \cup \{u \approx t\}; R, \\ & \text{if } s \to_R u \text{ or } s \to_{E^>} u \text{ with } l\sigma \to r\sigma \\ & \text{for } l \approxeq r \in E, s \rhd l. \end{split}$$

Ordered Completion: Properties

Theorem 2

Let $(E_0; R_0), (E_1; R_1), \ldots$ be an ordered completion derivation where all critical pairs are eventually generated (a fair derivation). Then these three properties are equivalent for all ground terms s and t:

- (1) $E_0 \vDash s \approx t$.
- (2) $s\downarrow_{E_{\omega}^{>}\cup R_{\omega}} t$.
- (3) $s \downarrow_{E_i^{>} \cup R_i} t$ for some $i \ge 0$.

This theorem, in particular, asserts the refutational completeness of ordered completion.

Proving by Ordered Completion: Example

Given:

- 1. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$.
- 2. $x \cdot e \approx x$.
- 3. $x \cdot i(x) \approx e$.
- 4. $x \cdot x \approx e$.

Prove

Goal: $x \cdot y \approx y \cdot x$.

Proof by ordered completion:

- Skolemize the goal: $a \cdot b \approx b \cdot a$.
- $\,\blacktriangleright\,$ Take LPO as the reduction ordering with the precedence i>f>e>a>b
- $E_0 := \{(x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ x \cdot e \approx x, \ x \cdot i(x) \approx e, \ x \cdot x \approx e\}$
- $ightharpoonup R_0 \coloneqq \varnothing$
- Start applying the rules.

$$E_0 = \{(x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ x \cdot e \approx x, \ x \cdot i(x) \approx e, \ x \cdot x \approx e\}$$

$$R_0 = \emptyset$$

Apply ORIENT 4 times:

$$E_4 = \emptyset$$

$$R_4 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e\}$$

$$E_0 = \{(x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ x \cdot e \approx x, \ x \cdot i(x) \approx e, \ x \cdot x \approx e\}$$

$$R_0 = \emptyset$$

Apply ORIENT 4 times:

$$E_4 = \emptyset$$

$$R_4 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e\}$$

Apply Deduce with the rules $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ and $x \cdot e \to x$ to the overlapping term $(x \cdot e) \cdot z$, and then Orient:

$$E_6 = \emptyset$$

$$R_6 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2\}$$

$$E_6 = \emptyset$$

$$R_6 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2\}$$

Apply DEDUCE with the rules $x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2$ and $x \cdot i(x) \to e$ to the overlapping term $x_1 \cdot (e \cdot i(e))$:

$$E_7 = \{x_1 \cdot i(e) \approx x_1 \cdot e\}$$

$$R_7 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2\}$$

$$E_7 = \{x_1 \cdot i(e) \approx x_1 \cdot e\}$$

$$R_7 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2\}$$

Apply Orient to $x_1 \cdot i(e) \approx x_1 \cdot e$ and then Composition with the rule $x \cdot e \rightarrow x$:

$$E_9 = \emptyset$$

$$R_9 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ x \cdot i(e) \to x\}$$

$$E_9 = \emptyset$$

$$R_9 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ x \cdot i(e) \to x\}$$

Apply Deduce with the rules $x \cdot x \to e$ and $x \cdot i(e) \to x$ to the overlapping term $e \cdot i(e)$, and then Orient:

$$E_{11} = \emptyset$$

$$R_{11} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ x \cdot i(e) \to x, \ i(e) \to e\}$$

$$E_{11} = \emptyset$$

$$R_{11} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ x \cdot i(e) \to x, \ i(e) \to e\}$$

Apply Collapse to $x \cdot i(e) \to x$ with $i(e) \to e$:

$$E_{12} = \{x \cdot e \approx x\}$$

$$R_{12} = \{(x \cdot y) \cdot z \rightarrow x \cdot (y \cdot z), \ x \cdot e \rightarrow x, \ x \cdot i(x) \rightarrow e, \ x \cdot x \rightarrow e,$$

$$x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2, \ i(e) \rightarrow e\}$$

$$E_{12} = \{x \cdot e \approx x\}$$

$$R_{12} = \{(x \cdot y) \cdot z \rightarrow x \cdot (y \cdot z), \ x \cdot e \rightarrow x, \ x \cdot i(x) \rightarrow e, \ x \cdot x \rightarrow e,$$

$$x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2, \ i(e) \rightarrow e\}$$

Apply Simplification to $x \cdot e \approx x$ with $x \cdot e \to x$ and then Delete to the obtained $x \approx x$:

$$E_{14} = \emptyset$$

$$R_{14} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e\}$$

$$E_{14} = \emptyset$$

$$R_{14} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e\}$$

Apply Deduce to $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ and $x \cdot i(x) \to e$ with the overlapping term $(x \cdot i(x)) \cdot z$ and then Orient:

$$E_{16} = \emptyset$$

$$R_{16} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2\}$$

$$E_{16} = \emptyset$$

$$R_{16} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2\}$$

Apply Deduce to $x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2$ and $x \cdot x \to e$ with the overlapping term $x_1 \cdot (i(x_1) \cdot i(x_1))$:

$$E_{17} = \{e \cdot i(x) \approx x \cdot e\}$$

$$R_{17} = \{(x \cdot y) \cdot z \rightarrow x \cdot (y \cdot z), \ x \cdot e \rightarrow x, \ x \cdot i(x) \rightarrow e, \ x \cdot x \rightarrow e,$$

$$x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2, \ i(e) \rightarrow e, \ x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2\}$$

$$E_{17} = \{e \cdot i(x) \approx x \cdot e\}$$

$$R_{17} = \{(x \cdot y) \cdot z \rightarrow x \cdot (y \cdot z), \ x \cdot e \rightarrow x, \ x \cdot i(x) \rightarrow e, \ x \cdot x \rightarrow e,$$

$$x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2, \ i(e) \rightarrow e, \ x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2\}$$

Apply Simplification to $e \cdot i(x) \approx x \cdot e$ with $x \cdot e \rightarrow x$ and then Orient:

$$E_{19} = \emptyset$$

$$R_{19} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x\}$$

$$E_{19} = \emptyset$$

$$R_{19} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x\}$$

Apply Deduce to $x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2$ and $e \cdot i(x) \to x$ with the overlapping term $x_1 \cdot (e \cdot i(x_2))$ and then Orient:

$$E_{21} = \emptyset$$

$$R_{21} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

$$E_{21} = \emptyset$$

$$R_{21} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

Applying COLLAPSE, SIMPLIFICATION, and DELETE, we get rid of $x \cdot i(x) \rightarrow e$:

$$\begin{split} E_{24} &= \varnothing \\ R_{24} &= \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \\ e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \} \end{split}$$

$$E_{24} = \emptyset$$

$$R_{24} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

Applying Collapse and Orient, we replace $e \cdot i(x) \to x$ with $e \cdot x \to x$:

$$E_{26} = \emptyset$$

$$R_{26} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

$$E_{26} = \emptyset$$

$$R_{26} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

Applying COLLAPSE and DELETE, we get rid of $x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2$:

$$E_{28} = \emptyset$$

$$R_{28} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

$$E_{28} = \emptyset$$

$$R_{28} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

Apply Deduce to $e \cdot x \to x$ and $x_1 \cdot i(x_2) \to x_1 \cdot x_2$ with the overlapping term $e \cdot i(x_2)$:

$$E_{29} = \{i(x_1) \approx e \cdot x_2\}$$

$$R_{29} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

$$E_{29} = \{i(x_2) \approx e \cdot x_2\}$$

$$R_{29} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

Apply SIMPLIFICATION to $i(x_1) \approx e \cdot x_2$ with $e \cdot x \to x$ and then ORIENT:

$$E_{31} = \emptyset$$

$$R_{31} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

$$E_{31} = \emptyset$$

$$R_{31} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

Apply Collapse and Delete, we get rid of $i(e) \rightarrow e$:

$$E_{33} = \emptyset$$

$$R_{33} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

$$E_{33} = \emptyset$$

$$R_{33} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

Applying Composition, we replace $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2$ by $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow x_2$:

$$E_{34} = \emptyset$$

$$R_{34} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (i(x_1) \cdot x_2) \to x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

$$E_{34} = \emptyset$$

$$R_{34} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (i(x_1) \cdot x_2) \to x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

Applying SIMPLIFICATION and ORIENT, we replace $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow x_2$ by $x_1 \cdot (x_1 \cdot x_2) \rightarrow x_2$:

$$E_{36} = \emptyset$$

$$R_{36} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

$$E_{36} = \emptyset$$

$$R_{36} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (i(x_1) \cdot x_2) \to x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

Apply Deduce to $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ and $x \cdot x \to e$ with the overlapping term $(x_1 \cdot x_2) \cdot (x_1 \cdot x_2)$, then Orient:

$$E_{37} = \emptyset$$

$$R_{37} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e\}$$

$$E_{37} = \emptyset$$

$$R_{37} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e\}$$

Apply DEDUCE to $x_1 \cdot (x_1 \cdot x_2) \to x_2$ and $x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e$ with the overlapping term $x_1 \cdot (x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)))$, then ORIENT:

$$\begin{split} E_{39} &= \varnothing \\ R_{39} &= \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \\ i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e \} \end{split}$$

$$E_{39} = \emptyset$$

$$R_{39} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e\}$$

Apply Composition to $x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e$ with $x \cdot e \to x$:

$$E_{40} = \emptyset$$

$$R_{40} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1\}$$

$$E_{41} = \emptyset$$

$$R_{41} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1\}$$

Apply DEDUCE to $x_1 \cdot (x_1 \cdot x_2) \to x_2$ and $x_2 \cdot (x_1 \cdot x_2) \to x_1$ with the overlapping term $x_2 \cdot (x_2 \cdot (x_1 \cdot x_2))$:

$$\begin{split} E_{42} &= \{x_1 \cdot x_2 \approx x_2 \cdot x_1\} \\ R_{42} &= \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \\ i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e\} \end{split}$$

$$E_{42} = \{x_1 \cdot x_2 \approx x_2 \cdot x_1\}$$

$$R_{42} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e\}$$

The equation $x_1 \cdot x_2 \approx x_2 \cdot x_1$ joins the goal $a \cdot b \approx b \cdot a$. Hence, the goal is proved.

