Automated Reasoning Exercises (326.094, WS 2013)

Temur Kutsia

Problem 1: Let $S:=\{p(a, b), \neg p(b, a), a \approx b\}$. Find all \mathcal{E}-interpretations of S. Is $S \mathcal{E}$-unsatisfiable? Why?

Problem 2: Let $S:=\{p(x) \vee x \approx b, \neg p(a), p(b)\}$. Find an \mathcal{E}-unsatisfiable set S^{\prime} of ground instances of clauses in S.

Problem 3: Let $C_{1}:=p(f(x, g(x))) \vee q(x)$ and $C_{2}:=a \approx b \vee g(a) \approx a \vee$ $f(a, g(a)) \approx b$. Find all binary paramodulants of C_{1} and C_{2}.

Problem 4: Consider the following set S of clauses:
(1) $r(a) \vee r(b)$
(2) $\neg p(y) \vee s(a, y)$
(3) $\neg r(x) \vee \neg q(y) \vee \neg s(x, y)$
(4) $p(a) \vee \neg q(a)$
(5) $q(b) \vee \neg r(b)$
(6) $a \approx b$

Using the $\mathcal{P} \mathcal{R}$ inference system discussed in the class, find a refutation from S. Can you find an input refutation by $\mathcal{P} \mathcal{R}$?

Problem 5: Consider the following set S of clauses:
(1) $p(b) \vee q(a)$
(2) $p(a) \vee \neg q(b)$
(3) $\neg p(a) \vee q(b)$
(4) $\neg p(b) \vee \neg q(a)$
(5) $a \approx b$

Find a linear refutation from S with the top clause (5). Repeat the same with the top clause (1).

Problem 6: Is the TRS consisting of the rewrite rules

$$
\begin{aligned}
d(0) & \rightarrow 0 \\
d(s(x)) & \rightarrow s(s(d(x)))
\end{aligned}
$$

terminating?
Problem 7: Use LPO to show termination of the following TRS:

$$
\{f(g(g(x)), y) \rightarrow f(g(x), f(x, y)), \quad f(g(x), g(y)) \rightarrow f(f(x, x), f(y, y))\}
$$

Problem 8: Prove $i(i(x)) \approx f(i(a), f(b, a))$ from the equalities

$$
\begin{aligned}
f(x, e) & \approx x \\
f(x, i(x)) & \approx e \\
f(x, f(y, z)) & \approx f(f(x, y), z) \\
f(x, y) & \approx f(y, x)
\end{aligned}
$$

using the ordered completion procedure, where the reduction order is LPO with the precedence $i>f>e$. Show every step of the derivation, indicating the applied transformation rule.

