Automated Reasoning - WS 2013
 Lecture 3: First-Order Logic Syntax, Semantics, Normal Forms

Mădălina Erașcu Tudor Jebelean

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

$$
\{\text { merascu,tjebelea\}@risc.jku.at }
$$

October 23, 2013

Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms
(Un)Satisfiability \& (In)Validity

Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms
(Un)Satisfiability \& (In)Validity

Syntax

The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then
$P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.
An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then
$f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then
$P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.
An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then
$f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then
$P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.
An atom is \mathbb{T}, \mathbb{T}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax (cont'd)

Formulas are defined as follows:

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.

A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\forall F[x]$ and $\exists F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier \forall or \exists

A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.

> A variable is free in formula $F[x]$ if there is an occurrence of x that is not
> bound by any quantifier.
> Examples: Identify constants, variables (free, bound), quantifiers,
> functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow
\square

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

1. $\underset{x}{\forall} x+1 \geq x$

2. $\underset{x}{\forall} \underset{y}{\exists}(E[y, f[x]] \wedge \underset{z}{\forall}(E[z, f[x]] \Rightarrow E[y, z]))$

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow
5. $\underset{x}{\forall} x+1 \geq x$
6. $\neg(\underset{x}{\exists} E[0, f[x]])$

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a free variable, then $\underset{x}{\forall} F[x]$ and $\underset{x}{\exists} F[x]$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable is bound in formula $F[x]$ if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\exists}$.
A variable is free in formula $F[x]$ if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow
5. $\underset{x}{\forall} x+1 \geq x$
6. $\neg(\underset{x}{\exists} E[0, f[x]])$
7. $\underset{x}{\forall} \underset{y}{\exists}(E[y, f[x]] \wedge \underset{z}{\forall}(E[z, f[x]] \Rightarrow E[y, z]))$

Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability \& (In)Validity

Semantics

An interpretation / of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:
\Rightarrow to each constant we assign an element in D

- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T} . \Gamma\}$. Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{F}\}$, where
$I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics

An interpretation / of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$ Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{T}\}$, where
$l \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics

An interpretation / of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$. Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{F}\}$, where
$I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$.

Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$.

Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{F}\}$, where $I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics (cont'd)

Example: Find the truth value of the formula $F: \Longleftrightarrow \underset{x}{\forall} \underset{y}{\exists} x+y>c$, where

$$
I:\left\{\begin{array}{l}
D=\{0,1\} \\
c_{I}=0 \\
+, \rightarrow+_{\mathbb{Z}} \\
>_{1} \rightarrow>_{\mathbb{Z}}
\end{array}\right.
$$

Outline

Syntax
\section*{Semantics}

Equivalences of Formulas

Normal Forms

(Un)Satisfiability \& (In)Validity

Equivalences of Formulas

Two formulas F and G are equivalent iff the truth values of F and G are the same under any interpretation.

Note that

Equivalences of Formulas

$$
\begin{aligned}
& F \Longleftrightarrow G \equiv(F \Rightarrow G) \wedge(G \Rightarrow F) \\
& F \Rightarrow G \equiv \neg F \vee G \\
& F \vee G \equiv G \vee F \\
& (F \vee G) \vee H \equiv F \vee(G \vee H) \\
& F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H) \\
& F \vee \mathbb{T} \equiv \mathbb{T} \\
& F \vee \mathbb{F} \equiv F \\
& F \vee \neg F \equiv \mathbb{T} \\
& \neg(\neg F) \equiv F \\
& \neg(F \vee G) \equiv \neg F \wedge \neg G \\
& (Q x) F[x] \vee G \equiv(Q x)(F[x] \vee G) \\
& \neg \forall F[x] \equiv \underset{x}{\exists} \neg F[x] \\
& \stackrel{\forall}{\vee} \stackrel{x}{F}[x] \vee \underset{x}{\forall G[x]} \not \underset{x}{x} \underset{x}{\forall}(F[x] \vee G[x]) \\
& \underset{x}{\underset{x}{\exists}} F[x] \vee \underset{x}{\exists} G[x] \equiv \underset{x}{\exists}(F[x] \vee G[x]) \\
& F \wedge G \equiv G \wedge F \\
& (F \wedge G) \wedge H \equiv F \wedge(G \wedge H) \\
& F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H) \\
& F \wedge \mathbb{T} \equiv F \\
& F \wedge \mathbb{F} \equiv \mathbb{F} \\
& F \wedge \neg F \equiv \mathbb{F} \\
& \neg(F \wedge G) \equiv \neg F \vee \neg G \\
& (Q x) F[x] \wedge G \equiv(Q x)(F[x] \wedge G) \\
& \neg(\underset{x}{\exists}) F[x] \equiv \underset{x}{\forall} \neg F[x] \\
& \underset{x}{\forall} \underset{x}{x} x] \wedge \underset{x}{\forall} G[x] \underset{x}{\forall} \underset{x}{\forall}(F[x] \wedge G[x]) \\
& {\underset{x}{x}}_{\underset{x}{*}}^{x}[x] \wedge^{x} \underset{x}{\exists} G[x] \not \equiv^{x} \underset{x}{\exists}(F[x] \wedge G[x])
\end{aligned}
$$

Equivalences of Formulas

$$
\begin{aligned}
& F \Longleftrightarrow G \equiv(F \Rightarrow G) \wedge(G \Rightarrow F) \\
& F \Rightarrow G \equiv \neg F \vee G \\
& F \vee G \equiv G \vee F \\
& (F \vee G) \vee H \equiv F \vee(G \vee H) \\
& F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H) \\
& F \vee \mathbb{T} \equiv \mathbb{T} \\
& F \vee \mathbb{F} \equiv F \\
& F \vee \neg F \equiv \mathbb{T} \\
& \neg(\neg F) \equiv F \\
& \neg(F \vee G) \equiv \neg F \wedge \neg G \\
& (Q x) F[x] \vee G \equiv(Q x)(F[x] \vee G) \\
& \neg \underset{x}{\forall} F[x] \equiv \underset{x}{\exists} \neg F[x] \\
& \stackrel{x}{x} \stackrel{x}{F}[x] \vee \underset{x}{\forall} G\left[\begin{array}{c}
x \\
x
\end{array} \quad \neq \underset{x}{\forall}(F[x] \vee G[x])\right. \\
& \underset{x}{\underset{x}{\forall}} F[x] \vee \underset{x}{\exists} G[x] \equiv \underset{x}{\exists}(F[x] \vee G[x]) \\
& F \wedge G \equiv G \wedge F \\
& (F \wedge G) \wedge H \equiv F \wedge(G \wedge H) \\
& F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H) \\
& F \wedge \mathbb{T} \equiv F \\
& F \wedge \mathbb{F} \equiv \mathbb{F} \\
& F \wedge \neg F \equiv \mathbb{F} \\
& \neg(F \wedge G) \equiv \neg F \vee \neg G \\
& (Q x) F[x] \wedge G \equiv(Q x)(F[x] \wedge G) \\
& \neg(\underset{x}{\exists}) F[x] \equiv \underset{x}{\forall} \neg F[x] \\
& \underset{x}{\forall} \underset{x}{x} x] \wedge \underset{x}{\forall} G[x] \underset{x}{\forall} \underset{x}{\forall}(F[x] \wedge G[x]) \\
& {\underset{x}{x}}_{\underset{x}{*}} F[x] \wedge^{x} \underset{x}{\exists} G[x] \not \equiv \equiv_{x}^{x} \underset{x}{\exists}(F[x] \wedge G[x])
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \forall F[x] \vee \underset{x}{\forall} G[x] \equiv \underset{x}{\forall} \underset{x}{\forall} F[x] \vee \forall \underset{y}{\forall} G[y] \equiv \underset{x}{\forall} F[x] \wedge \underset{x}{\exists} G[x] \equiv \underset{x}{\exists} F[x] \wedge \underset{y}{\exists} G[y] \equiv \underset{x, y}{\exists} F[x] \wedge G[y]
\end{aligned}
$$

Outline

Abstract

Syntax

\section*{Semantics}

\section*{Equivalences of Formulas}

Normal Forms
(Un)Satisfiability \& (In)Validity

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and V to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, Λ, and V to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form
where M is a quantifier-free formula in CNF

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form
where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form
where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.
A FOL formula is in Skolem standard form if it is of the form $\underset{x_{1}, \ldots, x_{n}}{\forall} M$, where M is a quantifier-free formula in CNF.

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q)
$$

2. Bring the following formulas into Skolem standard form

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q) .
$$

2. Bring the following formulas into Skolem standard form

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q)
$$

2. Bring the following formulas into Skolem standard form

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q)
$$

2. Bring the following formulas into Skolem standard form

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q) .
$$

2. Bring the following formulas into Skolem standard form

$$
\begin{aligned}
& \underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z]) \\
& \underset{x, y}{\forall}(\underset{z}{\exists} P[x, z] \wedge P[y, z]) \Rightarrow \underset{u}{\exists} Q[x, y, u]
\end{aligned}
$$

Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability \& (In)Validity

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable iff there exists an interpretation / such that $I \models F$.
A formula F is valid iff for all interpretations $I, I=F$
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable iff there exists an interpretation / such that $I \models F$.
A formula F is valid iff for all interpretations $I, I \models F$.
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable iff there exists an interpretation / such that $l \models F$.
A formula F is valid iff for all interpretations $I, I \models F$.
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable iff there exists an interpretation / such that $l \models F$.
A formula F is valid iff for all interpretations $I, I \models F$.
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that
$\Rightarrow \underset{x}{\forall} P[x] \wedge \underset{y}{\exists} \neg P[y]$ is inconsistent.

- $\underset{x}{\forall} P[x] \Rightarrow \underset{y}{\exists} P[y]$ is valid.

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable iff there exists an interpretation / such that $l \models F$.
A formula F is valid iff for all interpretations $I, I \models F$.
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

- $\underset{x}{\forall} P[x] \wedge \underset{y}{\exists} \neg P[y]$ is inconsistent.
$\Rightarrow \underset{x}{\forall} P[x] \Rightarrow \underset{y}{\exists} P[y]$ is valid.

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable iff there exists an interpretation / such that $l \models F$.
A formula F is valid iff for all interpretations $I, I \models F$.
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

- $\underset{x}{\forall} P[x] \wedge \underset{y}{\exists} \neg P[y]$ is inconsistent.
- $\underset{x}{\forall} P[x] \Rightarrow \underset{y}{\exists} P[y]$ is valid.

