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3.8 Definitions Within Predicate Logic

Before using predicate logic as a working language one has to add onme
more facility which is indispensable for concise formalization, namely the
facility of defining new concepts in terms of available concepts in predicate
logic. In principle, definitions can be eliminated but practically they are
indispensable because

e they allow to make formulae shorter and

e they are the means for structuring knowledge presented in predicate
logic.

Practical mathematics would hardly be conceivable without definitions.

3.8.1 The Four Basic Types of Definitions

There are four basic types of definitions available in predicate logic:
¢ (explicit) definitions of predicate symbols,
» explicit definitions of functions symbols,
¢ implicit non-unique definitions of function symbols,

e implicit unique definitions of function symbols.

We give one example for each of the four types.

In the examples we allow various simplifications of predicate logic nota-
tion! In particular we sometimes use natural language constructs for predi-
cate and function symbols and allow phrases like “i is reducible” instead of
“is-reducible(i)” etc. Also, we omit universal quantifiers at the beginning
of a formula (i.e. free variables are considered to be universally quantified).

Example 3.1 The following formula defines the predicate symbol “is re-
ducible” (unary) using the binary predicate symbol | (“divides”):

i s reducible : =+ VF(fle — (f =1V f = 1))
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The part of the definition to the left of the colon is called the “defi-
niendum” (Latin: “to be defined”) and the right-hand part is called the
“definiens” (Latin: “the defining”). The colon is not actually part of the
definition. It is a symbeol on the meta-level for indicating that this formula
is a definition. In fact we will see that it is clear from the structure of the
formula whether or not it is a definition.

Example 3.2 The following formula ezplicitly defines the {-ary function
symbol “determinant” using the binary function symbols — and »:

dﬂteﬂmnaﬂt(ﬂl.h @1,2y82,1, ﬂz.z) =811 kaz3 — a12 % az)-

Example 3.3 The following formula non-uniquely implicitly defines (e.g.
in the theory of complex numbers) the unary function symbol  / using the
binary function symbols »:

VT := aysuch that y«y = z.

Here, the new quantifier “a ... such that ...” appears. ' Such a formula
should just be conceived as an abbreviation for the following formula:

y=vEoyry=z.

Example 3.4 The following formula uniquely implicitly defines (e.g. in
the theory of real numbers) the unary function symbol ,/ using the binary
function symbols * and the binary predicate symbol >. '

VZ := the y such that
(220—(y20Ay+y=z))
A
(z<0—>y=0).

Here, the new quantifier “the ... such that ...” appears. Such a formula
should be conceived as an abbreviation for the following formula:

y = /T e
(z20-(y>290Ay*ry=1))
A
(z<0-y=0 0O

When introducing new predicate and function symbols by definitions,
two questions arise:
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» Can the definitions introduce contradictions into a theory that so far
was consistent?

¢ Can one derive essentially new theorems that so far were not derivable
in the theory?

The answer to both questions is “no”. If certain rules for definitions
are followed, definitions cannot introduce contradictions. Also, no “essen-
tially” new theorems can be derived where “essentially new” means “new
after elimination of the defined symbols”. In fact, defined symbols can be
eliminated in the sense that each formula containing defined symbols can
be systematically transformed into an equvialent formula not containing
these symbols. The transformed formulae can already be derived in the old
theory. :

The proof of these facts about definitions is not really difficult but quite
lengthy. We cannot give the proofs. However, we exactly formulate the
logical facts about definitions so that practical situations can be handled in
a clean way. -

3.8.2 Theories

As we have seen in the above examples of implicit definitions, it is important
to consider the underlying theory for deciding whether or not a definition is
appropriate. Hence, for making the formal properties of definitions clear we
need the notion of a “theory”, i.e. knowledge formulated in predicate logic.
“Theories” are characterized by the language in which they are formulated,
le. by a domain of symbols, and by their “knowledge base” or “set of
axioms”, i.e. by a set of formulae from which all other facts of the theory
can be derived by reasoning.
Let V be a fixed set of variables.

Definition 3.5 (Theory) T is called a theory of first order predicate loéic
iff there exist S and F such that T = (5, F) and

S is a domain of non-logical constants disjoint from 1~ and
F is a set of formulae over V" and §.

Definition 3.6 (Theorem) fisa theorem of 2 theory (S5, F)if F bxp f.

Definition 3.7 (Extension) The theory 7V = ((FS', RS’, AR"), F') is an
extension of the theory T = ((F S, RS, AR), F) iff
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FSCFS,
RS C RS,
for all fs € F'S, AR(fs) = AR'(fs),
for all rs € RS, AR(rs) = AR/(rs),
for all f,
if fis a theorem of T then f is a theorem of TV. O

The latter condition can also be replaced by the condition that all f in
F must be theorems in T’. (However, it is not necessary that F C F'.}

Definition 3.8 (Conservative Extension) The theory T' = (5, F'} is a
conservative extension of the theory T = (S, F') iff 7" is an extension of T
and

for all formulae f over S,
if f is a theorem of 7" then f is a theorem of T . O

Let, for the next four subsections T' = (5, F), with § = (FS§, RS, AR),
be an arbitrary but fixed theory. “

3.8.3 Definitions of Predicate Symbols

Definition 3.9 (Form of Explicit Definitions) A formula d is a defini-
tion of the predicate symbol rs over the theory T iff d has the form

Yy, ..., on( rs(vy, ..., ) 1o f)

where rs is an n-ary relation symbol not occurring in RS and f is a formula
over S in which no variables other than the distinct variables v,...,v, are
free.

Definition 3.10 (Translated Formula) Let T':= (5’, F'} be the exten-
ston of T, where

S':=(FS RSU {rs}, AR"),
F':= FuU{d}, and
d is a definition of rs over T of the form

rs(vy, ..., Vn) i [

. Then, for each formula ¢’ over §’, the translation of g is the formula ¢
that results from g’ by replacing each part rsft;,...,t.) by fi{v1,...,va) —
. (tl: s :tn)]°
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Lemma 3.11 (Elimination of Defined Symbol) With the notation of
the previous definition we have:

F'rup (g = g), (1)
77.#" is a conservative extension of #, T (2)
F'typ g iff Frypg. (3)

O

(3) means that the defined predicate symbol rs may always be “elimi-
nated” from any formula g’ such that the resulting formula is derivable in
F iff ¢' is derivable in F'. (3) is an easy consequence of (1) and (2).

Note that the condition on the variables is crucial in definitions of pre-
dicate symbols.

Example 3.12 The “definition”
fisafactor i f |z

introduces a contradiction (i.e. the extension of the given theory by this
definition is not “conservative”), namely

3 is a factor :++ 3| 3, and
3 is a factor :> 3| 5.

Hence, 3 is a factor because 3 | 3, and 3 is not a factor, because not 3 | 5, a
contradiction. O

In practice, the definitions of predicate symbols are sometimes also given
in a form where the left-hand side does not only contain variables but terms.
This must be handled with care and is only possible if the occurring terms
have the properties of injective “pairing functions”. In fact we used this
type of definition several times on the “metalevel”.

Example 3.13

(S, F) is a theory :e»
5 is a domain of symbols A F is a set of formulae.

"

“Is a theory” is a unary predicate symbol (on the metalevel), “(5, F)
s a term, not a variable!. Such a “definition” cannot introduce any con-
tradiction because for the function symbol “(,)” in set theory the following
property holds:



CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 10

(z,9)=(zy) =" Ay=y" (uniqueness)

Hence § and F are uniquely determined by (S, F). Therefore it is not
possible to derive the contradiction that something is a theory and is not
a theory. In fact the above “definition” can always be rewritten in the
following form (which, however, is clumsy):

T is a theory : :
35, F(T = (S, F)A S is a domain of symbols A
F is a set of formulae). O

A “definition” having terms on the left-hand side is not allowed if the
uniqueness property cannot be proven in the theory. Consider the following
example:

Example 3.14
Zz -+yis anice sum — =2 y.
In fact, this definition leads to a contradiction:

6+3isanicesum<——>6=2y3,
S5+4isanicesum — 5 =2x4.

Hence, 9 is both a nice sum and not a nice sum.

3.8.4 Properties of Explicit Definitions of Function
Symbols

Definition 3.15 (Form of Explicit Definitions) A formula d is a defi-
nition of the function symbol fs over the theory T iff d has the form

Yoy, oo va fs{v, .o vn) 1= 1)

where fs is an n-ary function symbol not occurring in FS and f is a term
over S in which no variables other than the distinct variables Uy,..., U, are
free. 5

The notion of the translated formula g of a formula ¢’ involving the new
function symbol fs and the way the new function svmbol can be eliminated
‘s exactly analogous to the case of defined predicate symbols.

Again, the condition on the variables is crucial in the explicit definitions

f function symbols.
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Example 3.16 The “definition”
Hz)i=zxy

introduces a contradiction. Why? O

Again, the “explicit” definitions of function symbols are sometimes also
given in a form where the left-hand side does not only contain variables but

terms. This is again possible if the occurring terms have the properties of
injective “pairing functions”.

Example 3.17
On the metalevel we could define

((tr =t2))4 == equ({t,) 4, {t2)a),
T =y —equ(z,y}:=T,
oz =y — equ(z,y) ;= F.

Here, we used = instead of = for denoting equality on the object level
in order to distinguish it from the = on the metaleve]. Strictly, this is
not an explicit definition. However, it can easily be transformed into the
following explicit definition of the binary function symbol “(,)” because the
components ¢; and ¢, are uniquely determined in the formula t; = ¢,. (“="
is a function symbol on the metalevell),

(£)a := equ((op,(£)) 4, (op2(F))a).

Here, = again has the essential “pairing function property”
F=y)=@'=y)o@z=a)r(y=y)
and op;, op, are the corresponding “projection functions” satisfying

opi{z =y) =1z,
opz =y) =y,
op1(z) = opy(z) = 2. O
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3.8.5 Properties of Non-Uniqué Implicit Definitions
of Function Symbols

Definition 3.18 (Form of Definitions) A formuladisa non-unigue im-
plicit definition of the function symbol fs over the theory T iff d has the
form

VU1,- .- ,'U,,,'U(‘I'J =f.9(‘!)1,. . '!.’U"-) - f)

where fsis an n-ary function symbeol not occurring in F'S and f is a formula
in which no variables other than the distinct variables Vi,...,VU,, 7 are free.
a

Note that d is equivalent to
flv —fs{vy, ..., v)).

We should also mention that a formula d of the above kind is not always
considered a “definition” of the function symbol. Some authors prefer to
reserve the word “definition” for what we call here “unique implicit defi-
nitions” (see next subsection). In fact it is not possible to eliminite non-
uniquely defined function symbols. Still, the expressive power of a theory
is not essentially enhanced by non-uniquely defined function symbols:

Lemma 3.19 (Extension is Conservative) Let 7" := (S, F') be the ex-

tension of T, where é{ 4 b g oo 30 (f) e Toser |
Qj | A A ;

i

S':= (F5,RSU {rs}, AR'),

F':= FU{d}, and

d 1s a non-unique implicit definition of fs over T of the form
V1, Ve, V(U =fs(v1, .., vn) — f)

Then F' is a conservative extension of F. OJ

It is crucial that the (existence condition) is a theorem in 7. Qtherwise,
a contradiction could be introduced by an implicit definition.

Example 3.20 Let

y=zToyry=z

v¢ a formula in which the variables range over the real numbers. Then

/ﬁzi:l&a @ l-‘*—"éi‘b"’)
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V=1xy~1=-1

and, hence,
Fy(y*y = -1)
in contradiction to
Wy *y = -1),

which can be proven in the theory of real mumbers. 0

3.8.6 Properties of Unique Implicit Definitions of
Function Symbols :

Definition 3.21 (Form of Definitions) A formuladisa unique implicit
definition of the function symbol fs over the theory T iff d has the form

VUI,...,'U“,U(U =f.5'(v1,...,v,.) Hf)

where fsis an n-ary function symbol not occurring in FS and f is a formula
in which no variables other than the distinct variables vy,...,u,, v are free.

Definition 3.22 (Translated Formula) Let T':= (5, F') be the exten-
sion of T, where

5':=(FS8,RS U {fs}, AR"),

F':= P {d}, and

d is a unique implicit definition of fs over T of the form
VU1, -y Un, v(v =fs(1y, . .. yUn) = f).

Then, for each atomic formula g’ over 5, the translation of ¢’ is the formula
g that results from ¢’ by recursive application of the following step: If fs
does not occur in ¢’ then g := g’ otherwise g’ can be written in the form

hlw —fs(ty, .. ., tn)]s

vhere A is an atomic formula, w is a variable and fs does not occur in any
f the ¢y, ...,¢,.Then g is

2w(fl(vr,. .., v0,v) — (1, tm,w)l A R,
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where A* is the translation of 4. (Note that A contains one less occurrence
of fs than g'.)

The translation of non-atomic formulae proceeds by translating each
atomic part.

Lemma 3.23 (Elimination of Defined Symbol) With the notation of
the previous definition we have: If the formulae

Yvi,...,93v(f), and (existence condition)
Vo, o Un, 0, V(f A flv = 2] = v = 0f), (uniqueness condition}

are theoremns of T then

F'byp (9 < 9), (1)
F' i3 a conservative extension of F, (2)
F'vyp g iff Flapg. | (3)

0

It is crucial that both the existence condition and the uniqueness condi-
tion is a theorem in T. Otherwise, a contradiction could be introduced by
an implicit definition.

Example 3.24 Let
R
(20> yry= z)
A
(z<0—y=0)

be a formula in which the variables range over the real numbers. The
uniqueness condition is not satisfied. We obtain the following contradiction:

3=v0
(9>0—-3%3=29)
A .
9<0-53=0), (1)

—3=v9«
(820 —(=3)%(-3)=9)
A

(9<0—-3=0), (2
3= \/§,_ from (1)
-3 =9, from (2)

3=-3.0C
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Note that for definitions by “cases” in which each case has the form of
an explicit definition, both the (existence condition) and the (uniqueness
condition) are automatically satisfied.

Example 3.25
=y —equz,y)="T,
~{z =y) — equ(z, y)=F,
is such a definition. Usually, these definitions are written in the form

_J T, ifz=y,
equ(z,y) = { F, otherwise.

Finally, we give an example of the above translation process.

Example 3.26 (Translation of a Formula) Let d be the following un-
ique implicit definition of the unary function symbol “reverse” (where the
variable f ranges over sequences, for simplicity of fixed length 10, and i and
7 range over integers):

Cf = reverse{f} = Vi(1<i< 10— f, = f{l__).-
Let g be the following formula:
reverse( reverse(f)) = f.

First step of translation:

3f'(f' = reverse(f) A reverse{ f') = f),
(G << 10 fi = f1.)
Areverse( f') = f).

Second step of translation:

I Vi(l<i<10— fi= f],.,)
AJF{f" = reverse(f} A f7 = f)),
IF(VIL<i<10— f, = fi,_)
AP (Vi1 i< 10— ff = f71,.0)
A = ).



