Some Examples of Elaborated Proofs

Finiteness Properties in Partial Orderings *

B.Buchberger
RISC-Linz

August 8, 1991

Abstract

We present a proof of the well-known fact that in partial orderings
the following four conditions are equivalent:

e Every ideal has a finite basis.
¢ Every non-ascending sequence is finite.
e Every infinite sequence has an infinite ascending subsequence.

o Every strictly descending sequence is finite and every set of mu-
tually incomparable elements is finite.

“Solution to the exam for the course “Thinking, Speaking, Writing”, 28 June 91

1 Introduction

Finiteness properties in partial orderings are important for proving termination
of algorithms. For example, termination of the Grobner bases algorithm can
be proven by applying the lemmas presented in this paper to the divisibility
ordering on power products.

The main part of this paper is Section 4, in which various finiteness con-
ditions for ideals and sequences in partial orderings are proven equivalent. In
Section 2 the basic notions are defined. Section 3 introduces a graphical re-
presentation for the basic notions that will make it easy to understand the
intuition behind the proofs. Section 5 is an appendix. It contains some ele-
mentary properties of ideals, which are used in the proof of the main theorem
in Section 4.

2 Definitions

We use the convention that, if R, P etc. are sets, then r, p etc. are used as
typed variables for elements in R, P etc. j, k, [are typed variables ranging
over N, the set of natural numbers > 1. We assume that the notion of a
P-sequence p (a sequence of elements in P) and of the length [p| of such a
sequence is known.

Definition 2.1 (Relational Domains)
(R, <) is a relational domain iff R # Q) and < C R x R.

Definition 2.2 (Reflexive and Anti-Reflexive Extensions)

(R, <, <) is the reflezive eztension of the relational domain (R, <) iff
r Sy iff (ry <ryorr =m,).

(R, <, <) is the anti-reflezive extension of the relational domain (R, <) iff
r1 <7y iff (ry <7y and ry # 7).

Definition 2.3 (Partial Orderings)

(P, <) is a partial ordering iff
(P, <) is a relational domain,

if p1 < p; < p3 then p; < p3, (transitivity)
not (py < p; and p; < p1). (antisymmetry)
a

Let now (P, <) range over partial orderings and I and B range over subsets

of P.

Definition 2.4 (Ascending and Non-Ascending Sequences)
P is an ascending (P, <)-sequence iff
P Is a ‘P-sequence and,

for all 7 < [p|, ; < Pja-

P is a non-ascending (P, <)-sequence iff
p is a P-sequence and,
for no 7,k with 7 < k < |p|, p; < p&.

Definition 2.5 (Ideals and Ideal Bases)

I is an ideal (of (P, <)) iff
I#(and
ificlandi<pthenpel.

ideal(B) (“the ideal generated by B (in (P, <))") =
= {p | for some b € B, b < p}.

B is a basis of I iff I = ideal(B).

I is a finitely generated ideal iff,
for some finite B # §, I = ideal(B). a

ideal(p) is an abbreviation for ideal({p}).

Definition 2.6 (Minimal Elements)

m is mintmal in I iff
m € I and,
fornozeI,i<m.

min(]) := {m | m is minimal in I}.

3 Graphical Representation

The intuition behind the proofs in the next sections can be illustrated by using
the following graphical representation:

The area

represents the set P.
Two elements p and p’ for which p < p’ holds are represented by

P

The ideal(p) is represented by the shaded area

4 Finiteness Properties in Partial Orderings

Before we show the equivalence of certain finiteness properties we establish a
lemma that describes the special role of minimal elements in finitely generated
ideals. This lemma is interesting in its own right but also contains a crucial
part of the equivalence proof.

In the proofs of this section we will, sometimes tacitly, use the elementary
properties of ideals compiled in the appendix.

Lemma 4.1 (Minimal Element Bases)

If I is a finitely generated ideal then min([/) is a finite basis for I.

Proof: Let B be a finite basis for /. By the base property of minimal
elements, min(7) C B. Hence, min([) is finite.

We now show that ideal(min(f)) = I. Of course, min() C I and, hence,
ideal(min(I)) C ideal(/) = I. It remains to show that I C ideal(min(7)).
For this it suffices to show that B C ideal(min()) because then

I = ideal(B) C ideal(ideal(min(I))) = ideal(min(I))

by ideal monotony and idempodency. For showing B C ideal(min(71)) we
observe that

for all b € B — min(I)
there exists an L(b) € B such that L(b) < b.

(If 5 € B — min([) then there exists an ¢ € I such that i < b because b is not
minimal in /. There exists an L(b) € B with L(b) < 7 because 7 € ideal(B).)
Let now b € B and let jo be the smallest index such that L()(b) € min(1).
Such a jo, must exist because otherwise {L)(b) | ; € N} would be an infinite
subset of B. Then, L(®)(b) < b and L*)() € min(]), i.e. b € ideal(min(7)).

Graphical Representation of the main idea in the proof:
an elemen? in min (Z\}

é—l__ L&Y

S SR
1
|
i

e

n <fement in E-~min (:'.‘)

Corollary 4.2 (Existence of Finite Subbases)

If I = ideal(B) and I is finitely generated
then, for some finite B, C B, I = ideal(By).

Proof: Take B, := min(/). By the base property of minimal elements and

the preceding lemma on minimal element bases, By has the required properties.
a

We present an alternative proof for the corollary that does not involve the
consideration of minimal elements. This proof is easier but less informative.

Alternative Proof: Let I = ideal(B) = ideal(B’) and B’ finite. Since B’ C
ideal(B), we have:

for all &' € B’ there exists an Sy € B such that Sy < ¥'.
Now,

By :={Sy | b’ € B'}

is finite. Furthermore, By € B. It remains to be shown that ideal(By) =
ideal(B). Of course, by ideal monotony, ideal(B,) C ideal(B). On the other
hand, ideal(B) C ideal(Bo): If b € ideal(B) = ideal(B’) then there exists a
b € B’ such that ¥ < b Now, Sy < ¥ and, hence, by := Sy € B, and
bo < ' < b. This shows that b € ideal(B,).

Graphical Representation of the main idea in the proof:
—
an element tn B’

T_T:

] |
L

@n element in R

Theorem 4.3 (Equivalent Finiteness Properties)

Let (P, <) be a partial ordering. The following conditions are equivalent:
Every ideal in (P, <) is finitely generated.
Every non-ascending (P, <)-sequence is finite.
Every infinite P-sequence has an infinite ascending (P, <)-subsequence.

Every strictly descending (P, <)-sequence is finite and
every set of mutually incomparable elements is finite.

Proof:

(Ideals finitely generated) = (non-ascending sequences finite): Let p be
an infinite non-ascending (P, <)-sequence. Let P := {5, | j € N} and assume
that

I:= ideal(P)

is finitely generated. By the above corollary there exists a finite basis By for I
that satisfies Bo C P. The set {j | p; € By} is finite because B, is finite and
all elements p, are distinct. Hence, we can define

k:=max{j Iﬁ] € By} + 1.

Now, px € I =ideal(B,). Hence there exists a j < k such that Pj < Pk, which
contradicts the assumption that p is non-ascending.

(Non-ascending sequences finite) = (ideals finitely generated): Let I be
an ideal without a finite basis. Then

for all finite sets B C I,
there exists an S(B) € I — ideal(B).

We construct an infinite non-ascending (P, <)-sequence p. Since I #) we can
choose a

prel
and then we can inductively define,

Pres1 :=S({p; |7 < k}), for all k > 1.

By construction it is clear that,
P € I — ideal({p; | j < k}), for all k > 1.
Hence,

for all 7, k,
if j < k then p; £ py,

i.e. p is an infinite non-ascending (P, <)-sequence.

Graphical Representation of the main idea in the proof:

Pa
F.L e
P
i
P ‘I non e mp ty

(Non-ascending sequences finite) = (infinite ascending subsequences): See

lecture notes. »

(Infinite ascending subsequences) => (non-ascending sequences finite): An
infinite non-ascending sequence p would have an infinite ascending subsequence
BiysPiy, .- With 43 <43 < ... and p;, < p;, < ... Hence, p would not be non-
ascending because, for example, 4, < 15 and $;, < p;,. This is a contradiction.

(Descending sequences finite) <= (ideals finitely generated): Not part of

the exam,

5 Appendix: Some Elementary Properties of
Ideals |

Lemma 5.1 (Elementary Ideal Properties)

B C ideal(B). (basis inclusion)
If B # 0 then ideal(B) is an ideal. (ideal generation)
If By C B, then ideal(B;) C ideal(B,). (ideal monotony)
If I is an ideal then ideal(l) = I. (ideal closure)
ideal(B) = ideal(ideal(B)). (ideal idempotency)
If I = ideal(B) then min(I) C B. (base property of minimal elements)
Proof:

(Basis inclusion): Let b € B. Of course, b < b. Hence, b € ideal(B).

(Ideal generation): ideal(B) is non-empty because B is non-empty and B C
ideal(B). Let now ¢ € ideal(B) and ¢ < p. Then b < 7 for some b € B. Hence,
b <4 < p and therefore, by transitivity, b < p. This shows that p € ideal(B).

(Ideal monotony): Let i € ideal(B;). Then there exists b; € B, such that
by < 4. Now b, is also in B;. Hence, i € ideal(B,).

(Ideal closure): By basis inclusion we know that I C ideal(J). Let now i’ €
ideal(I). Then i <+' for some ¢ € I. Hence, 3’ € I because I is an ideal.

(Ideal idempotency): ideal(B) is an ideal. Hence, by ideal closure, ideal(B)
= ideal(ideal(B)).

(Base property of minimal elements): Let m € min(I). There exists a
b € B such that b < m because m € [= ideal(B). We can exclude b < m
because b € I by base inclusion and m is minimal in /. Hence m = b € B.

Finite Ideal Bases, Descending Sequences
and Mutually Incomparable Elements
in Partial Orderings *

B.Buchberger
RISC-Linz

February 12, 1992

Abstract
We present a proof of the well-known fact that in partial orderings
the following two conditions are equivalent:

o Fvery ideal has a finite basis.

o Every strictly descending sequence is finite and every set of mutu-
ally incomparable elements is finite.

“Golution to the exam for the course “Thinking, Speaking, Writing”, 31 January 92

1 Notation and Definitions

In this paper we use the notation and definitions of [1]. In addition, we need
the following two definitions.

Definition 1.1 (Strictly Descending Sequences)

P is a strictly descending (P, <)-sequence iff
P is a P-sequence and
forall j < 1[3!, ,ﬁj > }5]‘«;,_1,

Definition 1.2 (Sets of Incomparable Elements)

T

S is a (P, <)-set of mutually incomparable elements iff
for all 51,50 € .5, 51 £ 59.

2 Theorem and Proof

In [1], some finiteness properties in partial orderings have been proven equiv-
alent. Here, we show an additional equivalence. In the proof we use some of
the lemmata established in [1].

Theorem 2.1 Let (P, <) be a partial ordering. Then the following conditions
are equivalent:

Every ideal in (P, <) is finitely generated.
Every strictly descending (P, <)-sequence ts finite and
every (P, <)-set of mutually incomparable elements is finite.

Proof:

(Ideals finitely generated) == (strictly descending sequences finite) and (mu-
tually incomparable sets finite):

Let p be a strictly descending sequence. Then p is non-ascending. Hence,
p is finite by Theorem 4.3 in [1].
Let now & be a set of mutually incomparable elements and let

370

e S ey 1 AY
[T L(.h;a’ii{‘) 1B

s a finite basis of [,

v elernent § &

en, for some 8" € 9, ¢

.\
-l
[
-~
S
=
o
o
o~
M
[
o

, 1
5. a contradiction to the fact that 5

a set of mutually incomparable elements). Hence, 5 C min(/) and, therefore,
S is finite.

(Strictly descending sequences finite) and (mutually incomparable sets finite)
=3 (ideals finitely generated):

We assume that all sets of mutually incomparable elements are finite and
consider an ideal that is not finitely generated. We have to construct an
infinite strictly descending sequence p.

First, we observe that min(/) is a set of mutually incomparable elements.
Hence, min([) is finite by the assumption.

Now we prove that

for all i € I — ideal(min(l)) -
there exists a D(:) € [— ideal(min([)) with D(z) <.

[Graphically,

fde::[. (")'r’)}n (’Zﬂ

\ I = /deal (min)

]
In fact, if ¢ € [- ideal(min(7)), there exists a D(i) € [with D(z) <1 because
otherwise ¢ would be in min(7) and, hence, in ideal(rin(l)). Furthermore,
D(i) ¢ ideal(min()) because otherwise i > D(i) > iy for some iy € min([l),
le. 7 € ideal(min(l)).
Now we define
p1 = an element in [— ideal(min(1))
(such an element exists because [is not finitely ¢
Prar o= D{pe), torall k> 1.

enerated) and

Now 1t 15 easy to show by induction that p is an infinite stric

sequence,

i}

Ly descending

References

An Interpolation Method

for Finding Boolean Expressions

that Represent Boolean Functions *

B.Buchberger
RISC-Linz

December 30, 1991

Abstract

We describe and verify an interpolation method for finding boolean
exprassions that represent boolean functions. We present the method
both in a variant that proceeds by recursion over the number of va-
riables and in a distributive variant that handles all variables at once.
The method is important, for example, as a basic step in the design of
switching circuits.

“Exercise in the the eourse “Thinking, Speaking, Writing”

1 Introduction

£y
i‘. b

“Switches” are devices that receive simple input, e. g “17 rue”) and

7 (“false”), from a finite number of input lines and produce a simple output

(“F” or “T7) as a deterministic answer. The most common types of elementary
switches are the “negation”, the “conjunction”, the “disjunction”, and some
sariants thereof, More complex switches (“swibching circuits”) can be built
from elementary switches by interconnecting their input and output lines in
a way that does not lead to “cycles” in the circuits. For an introduction to
switching circuits see {].

The representation problem of switching circuit theory is the problem of
finding a switching circuit for any given “finite behavior”, i. e. for any given
function with finite domain and range. This is the most fundamental problem
of switching circuit theory. In this paper, we will present a proof of the sur-
prising fact that switching circuits built from conjunctions, disjunctions, and
negations are powerful enough to represent any finite function. (In fact, dis-
junctions and negations alone would suffice. Also, some other combinations of
elementary switches are “complete” in the sense that they can represent any
finite function.)

Tt should be clear that the elements of a finite set can be “coded” by tuples
of “B" and “I”. Hence, arbitrary finite functions can be coded by “boo-
lean” functions, i. e. functions whose input and output is taken from the set
{F,T}. Furthermore, in a natural way, the structure of switching circuits can
be described by the syntactical structure of “boolean expressions” (or “boo-
lean terms”), see for example {|. Therefore, summarizing, the represenfation
problem of switching circuit theory can be formulated as the boolean represen-
tation problem, i. e. the problem of representing arbitrary boolean functions
by boolean expressions.

In this paper we prove that the boolean representation problem has an
zlgerithmic solution {see the Boolean Representation Theorer in Sectien 4,
whose proof is constructive, 1. e. exhibits an algorithm). Our presentation of
the necessary terminology and the proof is so detailed that an implementation
of the algorithm is immediately possible. In fact, we will provide two proofs
of the representation theorern. Both proofs are hased an the concept of “in-
terpolation”, i. e. a general approach by which function representations are
derived from function values. However, the first proof proceeds by recursion

&

NS P he “n"\\‘\:n‘“ Fi‘}““,‘ﬁl)" RRT lo k“‘ e g [Al e ‘11 IS A e o o~
over the numper of variables wnle the secona one nandles all varianies al once

(“distributive” approach).

tore we formall

+ the boolean representation problem and intro-
> > i

B H . L5 T N
Section 2 that

b ve Ve

. . . B ’ - B 1 o .
riant). oectic 13 sorne formal details that are used iv the proof of the

&

2 An Example

We consider the ternary boolean function f defined by the following table:

Tt [ty | ta | flt, by, ta) |
TIT|T]|T
TIT[F | T
TIF T |7
TIF|F | F
F|T|T|T
FIT|F | F
FIF|T|E
FIF|F|T

We want to construct a boolean expression e, i. e. an expression composed
from variables and the symbols = (“not” or “negation”), A (“and” or “con-
juction”), and V (“or” or “disjunction”) with the property that e represents
f. For this we first determine all input triples for which f has the value T,
namely

(T,T,T),(T,T,F),(F,T,T), and (F,F,F).

Now, a suitable e can be obtained as a disjunction of conjunctions, where
each of the conjunctions characterizes one of the above triples:

e = (v Ava Avz) V
("71 A Va A ””"fg) \Y
(mvy Avy Avg) V
(mwyl N vy A L‘\‘(,v:j},

3 The Boolean Representation Problem

The following problem is called the boolean representation prablem:
Given: f and n, where f is an n-ary boolean function.
Find: e, an n-ary boolean expression,
such that the n-ary boolean function represented by e

is equal to f.

L

[n the sequel we define the notions occuring in this problem specification:

» the notion of “Loolean function”,
» the notion of “boolean expression”,
s the notion of “the boolean function represented by a boolean expression”.

We use the variables 1,7, k,{,m,n as typed variables ranging over N, the
set of natural numbers > 1. Furthermore, we use the convention that, if X,
T etc. are sets, then z, ¢t etc. are used as typed variables for elements in .,
T etc. and #, t are used as typed variables for tuples of elements in X, T
etec. For understanding the notation in some of the subsequent formulae, it is
important to note that we consider n-tuples as being built up recursively from

pairs in the following way

ol — T
St = 5, and

St {(5,8) {5 € S s € S), ifn €L

As usual, if f is a function, we sometimes write f(s;, ;) instead of f((s1,92)).
Let now T (“true”) and ¥ (“false”) be two distinct fixed objects.

Definition 3.1 (Boolean Functions)
T (“the set of truth values”) := {T,F}.

T (“the set of n-ary boolean functions”) 1= {f | =" — T}.
We will use ¢t and [as tvped variables ranging over T and ¥,
Definition 3.2 (Elementary Boolean Functions)

e negation function”) is the unary boolean function defined by:
f) =Tiff t =F.

fa (“the conjunction function”) is the binary boolean function defined byv:

f\fi:‘:l ty\ o 5 Qf (\6 = f rls‘;ﬂ f:'_v = T:)

on dehned oy

is the binary boolean fun

0T by = I)

Let now V be a countable set (“the set of boolean variables”) and let v be

a hijective enumeration of ¥V, 1, e. v N "y so that v = {vi,vg,...}. Let ¢
(negation symbol), “A” (conjunction symbol), and “v" (disjunction symbol)
be three distinct objects that do not occur in V.

Definition 3.3 (Boolean Expressions) The set £, (“the set of n-ary boo-
P v\

lean expressions”) is the set of strings over the alphabet v U {'“? A, V) that is
recursively defined as follows:

if 1 <1< nthenv

i
T = ST

ifee ¥, then ~e € =

sy
if ey,e; € &, then Aeje, € 7,

if ey, ep € %, then Vejep € =

YD ey

Furthermore,

Zom U E,. t

Note that the particular syntax we use here for boolean expressions is
“prefix” and does not need any parentheses. However, in the example above,
we used “infix” notation and parentheses for the sake of easy readability. We
will use v and e as typed variables ranging over ¥ and [, respectively.

Definition 3.4 (Boolean Representation) The function [, on E, (“the n-
ary boolean representation fz;7zbtion”) is recursively defined as follows:

if 1 <1 < nthen [v].(f) =

Iﬁgin(i) == fﬂ“({]ma
[Aer, ea]n(B) = fa([ed]a(d), [e2]n(£)),
Ve, ea]n() = fuller]al(E), [ea]n(2))-

(For {e]n read: “the boolean function represented by e”

4 The Boolean Representation Theorem
Theorem 4.1 (The Boolean Representation Theorem)

For all n-ary boolean functions f

there exists an n-ory bdoolean ezpression e such that jel, = f.

Recursive Proof:

The theorem is true for n = 1. [t can be easily verified that the four unary
boolean functions can be represented by the boolean expressions vy, —vy, Avy=vy,
and Vv,

Let now n be fixed. As induction hypothesis, we assume that all n-ary
boolean functions can be represented by boolean expressions. Let f be an
(n+1)-ary boolean function.

It is easy to check that (for ¢t € ¥ and £ € T7)

FlE,t) =
ERNS
FUfALE, FOE DY, FALSS(8), FOE E))). (recursive interpolation)

(Hint: consider the two cases t = T and ¢ = F.)
Now define

fp(t) = f(£,T) and
Fp(D) = f(E,F).

fr and fp are n-ary boolean functions and therefore, by induction hypothesis,
there exist boolean expressions e and ey in &, such that

{eT}n i fT and

[8}?‘]71 = fF'

Since, for arbitrary e € =, [elagei(f,¢) = [e]a(£), this implies that ’

leplnea(tt) = f(£,T) and (shifting true)

leplne (L, 8) = f(E F). (shifting false)

We finally define
0 czm A/ A yyern A e
IV AV AN Y- JARARIALS -
and verify

N

| < 1o s iy m G SR R ey ¥ L R S
(by the definition of boolean representation)

(by shifting true and false)

= fol falty FE T, FaUF-(0), F(E6))) =

(by recursive interpolation)
= f(i,1).
Distributive Proof:

Let f be an m-ary boolean function. Define now

e = Vf(i')xri‘ conjunction(t), where (distributive interpolation)

conjunction(#) = Aicicn literal(s, £) and

-
-

=T,
= F.

Then [e]l, = f as can easily be verified: First we note that

for all 1 <4 < n we have [literal(z,)],(¢) = T and

i

e SN Vi if
literal(z, £) = { 7 "

=y

[

v

if ¥ 5 € then
for some 1 < < n we have [literal(z, #)],({) = F.
Hence, by Lemma 5.3 on boolean set operations,
[conjunction(t)],({) = T and (equal truth tuples)

if # # £ then [conjunction(f)](£) = F. (unequal truth tuples)
Let now f be fixed. We want to show [e|,(f) = f(). For this we consider two
cases:
Case f(£) = T: In this case there exists a ¢, namely ¢ := £, with f(¢') = T
such that [conjunction(#)].(£) = T (use (equal truth tupl&s)). Hence, by
Lemma 5.3 on boolean set operations,

{’"]ﬁ[\g) = ()=
Case f(f) = F In

5

4

T cu;rgumt;on(t Na(f) =T = f(§).
thi

case there does not exist a ¢/ such that f(#') = T an d

[conjunct mr;’e")m(ff} = T because otherwise by (unequal truth tuples) £ -
am:L hence, j(ﬂ = f(#) =T in {‘omra,d'zt ion to the case assumption. Iz:maa,
by Lemma 5.3 on msr‘lsm set operations,

le]n(t) = [V fi=T p conjunction(t’)],(¢) = F = f(¢).

o

> A Technicality: Boolean Quantifiers

in the distributive proof of the Boolean Representation Theorem, we need the
“boolean quantifiers’ A and V for working with boolean expressions. They are

declared as follows: If - {

2) is a term and o{x) is a formula with free variable

Ve 7(z) and Ne(z) 7(Z) (boolean quantification)

are terms that abbreviate the terms
V{r() | ¢(2)}) and A{r(z) | é(z)}), (boolean set operations)

respectively. In boolean quantification, the variable z becomes bounded. In
fact, one would have to indicate the bounded variahle explicitly. However, we
assume that the bounded variable is always clear from the context.

[n (boolean quantification) the symbols \/ and A are quantifiers. However,
in (boolean set op rations), the same symbols denote functions:

Definition 5.1 (Boolean Set Operations) On the set of finite subsets of

I the functions \/ (“set disjunction”) and A (“set conjunction”) are recursively
defined as follows:

V(0) = Avy=vy,
V({e}) = e,

if B is a finite subset of % and B > 1
then V() = vchoice(E) V(E — {choice(£)}).

/\(@) =V

o 4 s ., : . o P B N 7]
11 /Y 1s a finite subset of = and {E] > 1
. N AL e s -
then A(E) = Achotce(EYA(E ~ {choiced Y

T LT P TS R R T by [N S 7
BLOEAIS dernition we o4 some unction “choice

It is easy to see that the following lemma holds:
Lemma 5.3 (Boolean Set Operations)
Let £ C F, be finite. Then

WVUENW(E) = T iff, for some e € Z,, [e]u(t) = T and

,S
/‘f\
=
I
N
i

- T iff, for all e € =, [e]a(t) = T.

6 Conclusion

We have given two constructive proofs (a recursive and a distributive one) of
the Boolean Representation Theorem that show that arbitrary boolean func-
tions can be represented by boolean expressions. The two proofs are both ba-
sed on the general idea of “interpolation”. In fact, by expanding the recursive
proof for the case of 2, 3, ... variables one immediately sees that the resulting
booelan expression, after some easy simplification, is exactly the expression
deacribed in the distributive proof.

Also it should be noted that the formulae for the desired boolean expres-
sions in the recursive and distributive proof could be used immediately as an
algorithm, for example in MATHEMATICA, for obtaining the boolean expres-
sions.

The booelan representation problem treated in this paper is intimately
connected with two other basic problems in switching circuit theory:

» the assignment problem, i. e. the problem of coding elements in a finite
set in such a way that subsequent representation of a given function
on the finite set by a switching circuit (boolean expression) becomes as

SR, Sy S
COOADINIC &8 PUsSiG,

s the optimization problem, i. e. the problem of finding the optimal boo-
lean expression for a given boolean function.

These two problems are much more difficult than the representation problem
and are beyond the scope of this paper.

Konig’s Lemma:
Finitely Branching Trees Without Infinite
Paths are Finite *

B.Buchberger
RISC-Linz

November 29, 1991

Abstract

We present a proof of Konig's lemma that guarantees that finitely
branching trees without infinite paths are finite. The lemma is useful
in various branches of computer science in which trees are models for
derivations, computations, reductions, simplifications etc., for example,
in automated theorem proving.

*Exercise in the the course “Thinking, Speaking, Writing”

1

1 The Role of Ko6nig’s Lemma

Konig’s lemma is important in various areas of computer science. For example,
in automated theorem proving, the proof of the famous Herbrand theorem is
based on the fact that certain “semantical trees” whose nodes are labeled by
clauses are finitely branching and do not possess infinite paths and, hence, by
Koénig's lemma must be finite. Herbrand’s theorem enables to reduce validity
in predicate logic to an iterative test of validity in propositional logic and,
hence, is crucial for the automation of predicate logic.

We will first give the precise definition of the notions involved in the for-
mulation of Kénig’s lemma (Section 2) and then state and prove the lemma
(Section 3).

2 Terminology

We use the convention that, if G, T etc. are sets, then g, t etc. are used as
typed variables for elements in G, T etc. Furthermore, j, k,[,m,n are typed
variables ranging over N, the set of natural numbers > 1. We assume that the
notion of a (finite or infinite) G-sequence § (a sequence of elements in G) and
the notion of the length |§| of such a sequence is known.

Definition 2.1 (Directed Graphs)
(G,—) is a directed graphif G # 0 and - C G x G.
Let now (G, —) be a directed graph.

Definition 2.2 (Auxiliary Notions for Directed Graphs)
g is a path iff

g is a G-sequence and

for all 2 < |, 3i = Git1-

g —* ¢' iff there exists a finite path § such that
g1 =g and §, = ¢’, where n = |§|.

S(g) (“the set of successors of g”) := {¢' | g =" ¢'} O

If (G, —) is a directed graph then the elements of G are called the “nodes”
of the graph and a pair (g, g’) such that g — ¢’ is also called an “edge” of the
graph. If g — g’ then we also say that g is an “immediate predecessor” of g’
and that ¢’ is an “immediate successor” of g. If g —* ¢’ then we say that g is
a “predecessor” of ¢’ and g’ is a “successor” of g.

e)

Definition 2.3 (Trees)

A directed-graph (1)), ~,t) is a (directed) tree iff
“t ¢ T and ¢ has no immediate predecessor,
“ ‘each t # ¢ has exactly one immediate predecessor and

Sy =T.

A tree (T, —, t) is called “finitely branching” iff
each t € T has only finitely many immediate successors.

If (T, —, %) is a tree then ¢ is also called the “root” of the tree.

3 Konig’s Lemma

Lemma 3.1 (Konig’s Lemma)
If (T, —,t) is a finitely branching tree without infinite paths
then 7' isfinibes -

Proof: We assume that

(T, —,%) is a finitely branching tree and
T is infinite.

We have to construct an infinite path.
It is clear that for allt € T

S(t) = {t} YUy with e-e S()-
From this we see that, since (T, —,t) is finitely branching,

forallt e T
there exists a C; € T such that
if 5(t) is infinite then t — C, and S(C,) is infinite.

Now we can construct the following infinite sequence ¢:

(For 7 = 1 note that 7" = S(¢;), i. e. $(£;) is infinite.) Hence, ¢ is an infinite

path. O
We can sumrmarize the proof in the following graphics:

[oS]

