Aufgabe Berechnen Sie den Grenzwert $\lim_{n\to\infty} \frac{2^n - 3^n}{3^n + n}$.

Aufgabe Sei $(a_n)_{n=0}^{\infty}$ eine Folge in \mathbb{R} so dass $|a_n| \leq n$ für alle $n \in \mathbb{N}$. Zeigen Sie:

 $\lim_{n \to \infty} \frac{a_n}{n^2} = 0.$

Aufgabe Zeigen oder widerlegen Sie: Wenn $(a_n)_{n=0}^{\infty}$ eine divergente Folge ist und $(b_n)_{n=0}^{\infty}$ ist eine Folge mit $b_n \geq a_n$ für alle $n \in \mathbb{N}$, dann ist $(b_n)_{n=0}^{\infty}$ ebenfalls divergent.

Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz:

a)
$$\sum_{n=0}^{\infty} \frac{n^3}{3^n}$$
 b) $\sum_{n=0}^{\infty} \frac{3n+1}{2n^2+1}$

Aufgabe Bestimmen Sie diem Menge aller $x \in \mathbb{R}$, für die die folgende Potenzreihe konvergiert:

$$\sum_{n=0}^{\infty} (2^n + 3^n) x^n.$$

Aufgabe Es sei $(a_n)_{n=0}^{\infty}$ eine Folge mit $|a_n| \leq 1$ für alle $n \in \mathbb{N}$. Zeigen Sie: Wenn $\sum_{n=0}^{\infty} |a_n|$ konvergiert, dann konvergiert auch $\sum_{n=0}^{\infty} a_n^2$.

Aufgabe Berechnen Sie den Grenzwert
$$\lim_{x\to 0} \frac{\sin(x^2)}{e^x - 1 - x}$$

Aufgabe Außer dem in der Vorlesung eingeführten Begriff der Stetigkeit gibt es noch weitere Möglichkeiten, Stetigkeit zu definieren. Zum Beispiel heißt eine Funktion $f \colon D \to \mathbb{R}$ Lipschitz-stetig, falls gilt:

$$\exists \ L \in \mathbb{R} \ \forall \ x, y \in D : |f(x) - f(y)| \le L|x - y|.$$

Jede Lipschitz-stetige Funktion ist stetig im üblichen Sinn, aber nicht jede im üblichen Sinn stetige Funktion ist auch Lipschitz-stetig.

Zeigen Sie: Die Funktion $f:[0,1]\to\mathbb{R},\, f(x)=x^2$ ist Lipschitz-stetig. (Hinweis: Eine mögliche Wahl für L ist L=2.)

Aufgabe Sei $f: [0, \pi] \to \mathbb{R}$, $f(x) = x \sin(x) + \cos(x)$. Berechnen Sie alle Maximal- und Minimalstellen von f.

Aufgabe Berechnen Sie das Integral $\int_0^{\pi} x \sin(x) dx$.

Aufgabe Untersuchen Sie, ob die Funktion

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \quad f(x,y) = \frac{x e^y}{|x| + y^2}$$

im Punkt (0,0) konvergiert.

Aufgabe Berechnen Sie für die Funktion f aus der vorherigen Aufgabe den Gradient im Punkt (1,1).

Aufgabe Sei $D = [0,1] \times [0,1] \subseteq \mathbb{R}^2$ und $f \colon D \to \mathbb{R}$, $f(x,y) = x^2 + y^2$. Berechnen Sie das Volumenintegral $\int_D f(x,y)d(x,y)$.

 $\mathbf{Aufgabe}$ Sei f wie in der vorherigen Aufgabe und

$$\gamma \colon [0, \frac{1}{2}\pi] \to \mathbb{R}^2, \quad \gamma(t) = (\sin(t), \cos(t)).$$

Berechnen Sie das Kurvenintegral $\int_{\gamma} f(x,y) ds$.

Aufgabe

1. Berechnen Sie die Länge der Kurve

$$\gamma \colon [0,1] \to \mathbb{R}^3, \quad \gamma(t) = (19 + 2t + t^2, 3 - 4t - 2t^2, 1 + 4t + 2t^2).$$

- 2. Wie lautet die Kurve, die die gleichen Punkte wie γ aus (a) durchläuft, aber mit doppelter Geschwindigkeit?
- 3. Wie lautet die Kurve, die die gleichen Punkte wie γ aus (a) durchläuft, aber in umgekehrter Richtung?